Digital Typography in the New Millennium:
Flexible Documents by a Flexible Engine

Christos K.K. Loverdos' and Apostolos Syropoulos?

! Department of Informatics and Telecommunications, University of Athens
TYPA Buildings, Panepistimiopolis
GR-157 84 Athens, Greece
loverdos@di.uoa.gr
http://wuw.di.uoa.gr/~loverdos
2 Greek TEX Friends Group
366, 28th October Str.
GR-671 00 Xanthi, Greece
apostolo@obelix.ee.duth.gr
http://obelix.ee.duth.gr/~apostolo

Abstract. The TEX family of electronic typesetters contains the pri-
mary typesetting tools for the preparation of demanding documents, and
have been in use for many years. However, our era is characterized, among
others, by Unicode, XML and the introduction of interactive documents.
In addition, the Open Source movement, which is breaking new ground
in the areas of project support and development, enables masses of pro-
grammers to work simultaneously. As a direct consequence, it is reason-
able to demand the incorporation of certain facilities to a highly modular
implementation of a TEX-like system. Facilities such as the ability to ex-
tend the engine using common scripting languages (e.g., Perl, Python,
Ruby, etc.) will help in reaching a greater level of overall architectural
modularity. Obviously, in order to achieve such a goal, it is mandatory to
attract a greater programming audience and leverage the Open Source
programming community. We argue that the successful TEX-successor
should be built around a microkernel/exokernel architecture. Thus, ser-
vices such as client-side scripting, font selection and use, output routines
and the design and implementation of formats can be programmed as ex-
tension modules. In order to leverage the huge amount of existing code,
and keep document source compatibility, the existing programming in-
terface is demonstrated to be just another service/module.

1 Introduction

The first steps towards computer typesetting took place in the 1950s, but it was
not until Donald E. Knuth introduced TEX in 1978 [16] that true quality was
brought to software-based typesetting. The history of TEX is well-known and
the interested reader is referred to [16] for more details.

Today, the original TEX is a closed project in the sense that its creator has
decided to freeze its development. As a direct consequence no other programs

A. Syropoulos et al. (Eds.): TUG 2004, LNCS 3130, pp. 1-16, 2004.
© Springer-Verlag Berlin Heidelberg 2004

2 Christos K.K. Loverdos and Apostolos Syropoulos

are allowed to be called TEX. In addition, the freely available source code of
the system was a major step on the road towards the formation of the Open
Source movement, which, in turn, borrowed ideas and practices from the Unix
world. Furthemore, the development of TEX and its companion system, META-
FONT, had made obvious the need for properly documented programs. This, in
turn, initiated Knuth’s creation of the literate programming program develop-
ment methodology. This methodology advances the idea that the program code
and documentation should be intermixed and developed simultaneously.

The source code of TEX and METAFONT being freely available has had enor-
mous consequences. Anyone can not only inspect the source code, but also ex-
periment freely with it. Combined with TEX’s (primitive, we should note, but
quite effective for the time) ability to extend itself, this led to such success sto-
ries as IATEX and its enormous supporting codebase, in the form of packages.
As a direct consequence of the fact that the source code is frozen, stability was
brought forth. Note that this was exactly the intention Knuth had when devel-
oping his systems. A common referred-to core, unchanged in the passing of time
and almost free of bugs, offered a “secure” environment to produce with and
even experiment with.

However, in an everchanging world, especially in the fast-paced field of com-
puter science, almost anything must eventually be surpassed. And it is the emerg-
ing needs of each era that dictate possible future directions. TEX has undoubtedly
served its purpose well. Its Turing-completeness has been a most powerful as-
set/weapon in the battles for and of evolution. Yet, the desired abstraction level,
needed to cope with increasing complexity, has not been reached. Unfortunately,
with TEX being bound to a fixed core, it cannot be reached.

Furthermore, the now widely accepted user-unfriendliness of TEX as a lan-
guage poses another obstacle to TEX’s evolution. It has created the myth of
those few, very special and quite extraordinary “creatures”! able to decrypt and
produce code fragments such as the following?:

\def\s@vig{{\EOGm=\EOCn

\divide\EO@n by20 \relax

\ifnum\E0@n>0\s@vig\fi

\E0@k=\EO@n\relax

\multiply\EO@k by-20\relax

\advance\EO@m by \ED@k\relax

\global\advance\E0O@1l by \@ne

\expandafter\xdef\csname E0@d\Q@roman{\E0@1}\endcsname{/,
\ifnum\EO@m=0\noexpand\noexpand\EOzero
\else\expandafter\noexpand
\expandafter\csname EO\@roman{\EO@m}\endcsname\fi}

\expandafter\@rightappend

\csname E0Qd\@roman{\E0@1}\endcsname
\t@\epi@lmecDigits}}

Of course, to be fair, programmers in several languages (C and Perl among
others) are often accused of producing ununderstandable code and the well-
known obfuscated code contests just prove it. On the other hand, with the ad-

! The second author may be regarded as one of Gandalf’s famuli, while the first author
is just a Hobbit, wishing to have been an Elf.
2 Taken from the documentation of the epiolmec package by the second author.

Digital Typography in the New Millennium 3

vent of quite sophisticated assemblers, today one can even write well-structured
assembly language, adhering even to “advanced” techniques/paradigms, such as
object-oriented programming. Naturally, this should not lead to the conclusion
that we should start writing in assembly (again)! In our opinion, software com-
plexity should be tackled with an emphasis on abstraction that will eventually
lead to increased productivity, as is shown in the following figure:

. requires) increases .
Complexity requires, Abstraction | ———— (Productivity

TEX’s programming language is more or less an “assembly language” for
electronic typesetting. It is true that higher level constructs can be made —
macros and macro packages built on top of that. But the essence remains the
same. Although it is true that TEX is essentially bug free and its macro expansion
facility behaves the way it is specified (i.e., as defined in [9]), it still remains a
fact that it takes a non-specialist quite some time to fully understand the macro
expansion rules in spite of Knuth’s initial intentions [12, page 6].

The fact that one should program in the language of his/her choice is just
another reason for moving away from a low-level language. And it is true that
we envision an environment where as many programmers as possible can — and
the most important, wish to — contribute. In the era of the Open Source revo-
lution, we would like to attract the Open Source community and not just a few
dedicated low-level developers. Open Source should also mean, in our opinion,
“open possibilities” to evolve the source. This is one of our major motivations
for reengineering the most successful typesetting engine.

Richard Palais, the founding chairman of TUG, pointed out back in 1992 [12,
page 7] that when developing TEX, Knuth

... had NSF grant support that not only provided him with the time and equip-
ment he needed, but also supported a team of devoted and brilliant graduate
students who did an enormous amount of work helping design and write the
large quantity of ancillary software needed to make the TEX system work . ..

and immediately after this, he poses the fundamental question:

Where will the resources come from for what will have to be at least an equally
massive effort? And will the provider of those resources be willing, at the end
of the project, to put the fruits of all his effort in the Public Domain?

The answer seems obvious now. The way has been paved by the GNU /Linux/-
BSD revolutionary development model, as has been explained crystal clearly in
The Cathedral and the Bazaar [15].

This paper is an attempt to define a service-oriented architecture for a fu-
ture typesetting engine, which will be capable of modular evolution. We take a
layered approach of designing some core functionality and then define extensible
services on top of the core. The engine is not restricted to a specific program-
ming language either for its basic/bootstrapping implementation or, even more

4 Christos K.K. Loverdos and Apostolos Syropoulos

important, for its future enhancement. At the same time, we are bound to pro-
vide a 100% TEX-compatible environment, as the only means of supporting the
vast quantity of existing TEX-based documents. We intend to achieve such a
goal by leveraging the proposed architecture’s own flexibility. Specifically, a TEX
compatibility mode is to be supported and it should give complete “trip-test”
compliance. Later on, we shall see that this compatibility is divided into two
parts: source code compatibility and internal core compatibility. Both are pro-
vided by pluggable modules.

Structure of the Paper. In the following sections we briefly review the most
important and influential approaches to extending or reengineering TEX, includ-
ing TEX’s inherent abilities to evolve. Then we discuss a few desired character-
istics for any next generation typesetting engine. We advance by proposing an
architecture to support these emerging needs. Finally, we conclude by discussing
further and future work.

2 A Better TEX?

2.1 TgEX the Program

TEX supports a Turing-complete programming language. Simply, this means
that if it lacks a feature, it can be programmed. It contains only a few concepts
and belongs to the LISP family of languages. In particular, it is a list-based
macro-language with late binding [5, Sec. 3.3]:

Its data constructs are simpler than in Common Lisp: ‘token list’ is the only
first order type. Glue, boxes, numbers, etc., are engine concepts; instances of
them are described by token lists. Its lexical analysis is simpler than CL: One
cannot program it. One can only configure it. Its control constructs are simpler
than in CL: Only macros, no functions. And the macros are only simple ones,
one can’t compute in them.

Further analysis of TEX’s notions and inner workings such as category codes,
TEX’s mouth and stomach is beyond the scope of this paper and the interested
reader is referred to the classic [9] or the excellent [3].

TEX the program is written in the WEB system of literate programming.
Thus, its source code is self-documented. The programs tangle and weave are used
to extract the Pascal code and the documentation, respectively, from the WEB
code. The documentation is of course specified in the TEX notation. Although
the TEX source is structured in a monolithic style, its architecture provides for
some kind of future evolution.

First, TEX can be “extended” by the construction of large collections of
macros that are simply called formats. Each format can be transformed to a
quickly loadable binary form, which can be thought of as a primitive form of the
module concept.

Also, by the prescient inclusion of the \special primitive command, TEX
provides the means to express things beyond its built-in “comprehension”. For

Digital Typography in the New Millennium 5

example, TEX knows absolutely nothing about PostScript graphics, yet by using
\special and with the appropriate driver program (e.g., dvips), PostScript
graphics can be easily incorporated into documents. Color is handled in the
same way. In all cases, all that TEX does is to expand the \special command
arguments and transfer the command to its normal output, that is, the DVI file
(a file format that contains only page description commands).

Last, but not least, there is the notion of change file [3, page 243|:

A change file is a list of changes to be made to the WEB file; a bit like a stream
editor script. These changes can comprise both adaptations of the WEB file to
the particular Pascal compiler that will be used and bug fixes to TgX. Thus the
TeX.web file needs never to be edited.

Thus, change files provide a form of incremental modification. This is similar to
the patch mechanism of Unix.

Yet, no matter how foresighted these methods may be, twenty years after its
conception TEX has started to show its age. Today’s trends, and more impor-
tantly the programming community’s continuing demand for even more flexible
techniques and systems, call for new modes of expressiveness.

2.2 The BTEX Format

KTEX [10], which was released around 1985, is the most widely known TEX
format. Nowadays, it seems that IXTEX is the de facto standard for the commu-
nication and publication of scientific documents (i.e., documents that contain
a lot of mathematical notation). WTEX “programs” have a Pascal-like structure
and the basic functionality is augmented with the incorporation of independently
developed collections of macro packages. In addition, classes are used to define
major document characteristics and are in essence document types, such as book,
article, etc. Thus, each I'TEX “program” is characterized by the document class
to which it belongs, by the packages it utilizes, and any new macro commands
it may provide.

The current version of WTEX is called ITEX 2¢. Work is in progress to produce
and widely distribute the next major version, WTEX3 [11]. Among the several
enhancements that the new system will bring forth, are:

— Overall robustness

— Extensibility, relating to the package interface

— Better specification and inclusion of graphical material
— Better layout specification and handling

— Inclusion of requirements of hypertext systems

The IXTEX3 core team expects that a major reimplementation of IN'TEX is needed
in order to support the above goals.

The ConTgXt [13] format, developed by Hans Hagen, is monolithic when
compared to BTREX. As a result, the lessons learned from its development are
not of great interest to our study.

6 Christos K.K. Loverdos and Apostolos Syropoulos

2.3 N7S: The New Typesetting System

The NTS project [14] was established in 1992 as an attempt to extend TEX’s
typesetting capabilities and at the same time to propose a new underlying pro-
grammatic model. Its originators recognised that TEX lacked user-friendliness
and as a consequence it attracted many fewer users than it could (or should).
Moreover, TEX (both as a name and a program) was frozen by Knuth, so any
enhancements should be implemented in a completely new system.

NTS was the first attempt to recognize that TEX’s monolithic structure and
implementation in an obsolete language (i.e., the Pascal programming language)
are characteristics that could only impede its evolution. The techniques used to
implement TEX, particularly its “tight”, static and memory conservative data
structures have no (good) reason to exist today (or even when N7S was con-
ceived, in 1992), when we have had a paradigm shift to flexible programming
techniques.

After considering and evaluating several programming paradigms [19] in-
cluding functional, procedural and logic programming, the A/7S project team
decided to proceed with a Java-based implementation. Java’s object-oriented
features and its network awareness were the main reasons for adopting Java, as
N7TS was envisioned as a network-based program, able to download and combine
elements from the network.

Today, there is a Java codebase, which has deconstructed the several func-
tional pieces of TEX and reconstructed them in a more object-oriented way with
cleaner interfaces, a property that the original TEX source clearly lacks. In spite
of the promising nature of AV’7S, the directory listing at CTAN? shows that
the project is inactive since 2001%. It seems that the main focus is now the
development of e-TEX, which is presented in the following section.

2.4 e-TEX

e-TEX [17] was released by the N'TS team as soon as it was recognized that N7S
itself was very ambitious and that a more immediate and more easily conceivable
goal should be set. So, it was decided that the first step towards a new typesetting
system was to start with a reimplemented but 100% TEX compatible program.

e-TEX was released in 1996, after three years of development and testing. It
adds about thirty new primitives to the standard TEX core, including handling
of bidirectional text (right-to-left typesetting). It can operate in three distinct
modes:

1. “compatibility” mode, where it behaves exactly like standard TEX.

2. “extended” mode, where its new primitives are enabled. Full compatibility
with TEX is not actually sought and the primary concern is to make type-
setting easier through its new primitives.

3. “enhanced” mode, where bidirectional text is also supported. This mode is
taken to be a radical departure from standard TEX.

3 http://www.ctan.org/tex-archive/systems/nts/
4 We have last accessed the above URL in March 2004.

Digital Typography in the New Millennium 7

Today, e-TEX is part of all widely used TEX distributions and has proven to be
very stable. Indeed, in 2003 the ITEX team requested that future distributions
use e-TEX by default for ITEX commands, which has since been implemented
in TEX Live and other distributions.

2.5

Q [16], which was first released in 1996, is primarily the work of two people:
Yannis Haralambous and John Plaice. It extends TEX in order to support the
typesetting of multilingual documents. €2 provides new primitives and new fa-
cilities for this reason. Q’s default character encoding is the Unicode UCS-2
encoding, while it can easily process files in almost any imaginable character en-
coding. In addition to that, 2 supports the parameterization of paragraph and
page direction, thus allowing the typesetting of text in almost any imaginable
writing method®.

Much of its power comes from its new notion of QTPs (2 Translation Pro-
cesses). In general, an QTP is normally used to transform a document from a
particular character encoding to another. Obviously, an QTP can be used to
transform text from one character set to another. An QTP is actually a finite
state automaton and, thus, it can easily handle cases where the typesetting of
particular characters are context dependent. For example, in traditional Greek
typography, there are two forms of the small letter theta, which are supported
by Unicode [namely ¢ (03D1) and 6 (03B8)]. The first form is used at the be-
ginning of a word, while the second in the middle of a word. The following code
borrowed from [16] implements exactly this feature:
input: 2; output: 2;
aliases:

LETTER = (@"03AC-@"03D1 | @"03D5 | ©@"03D6 |
Q@"03F0-Q@"03F3 | @"1F00-Q"1FFF) ;
expressions:
~({LETTER}) @"03B8 ({LETTER} | ©"0027)
=> \1 @"3D1 \3;
.o=>\1;

For performance reasons, QTPs are compiled into QCPs (€2 Compiled Processes).

External QQTPs are programs in any programming language that can han-
dle problems that cannot be handled by ordinary QTPs. For example, one can
prepare a Perl script that can insert spaces in a Thai language document. Techni-
cally, external Q2TPs are programs that read from the standard input and write
to the standard output. Thus, €2 is forking a new process to allow the use of
an external QTP. In [16] there are a number of examples (some of them were
borrowed from [7]).

We should note that the field of multilingual typesetting is an active research
field, which is the main reason why 2 is still an experimental system. We should
also note that e-Q [4], by Giuseppe Bilotta, is an extension of Q that tries to
incorporate the best features of e-TEX and €2 in a new typesetting engine.

5 Currently the boustrophedon writing method is the only one not supported.

8 Christos K.K. Loverdos and Apostolos Syropoulos

2.6 pdfTEX

pdfTEX [18] is yet another TEX extension that can directly produce a file in
Adobe’s PDF format. Recently, pdf-e-TEX was introduced, merging the capa-
bilities of both pdfTEX and e-TEX.

3 Towards a Universal Typesetting Engine

From the discussion above, it is obvious that there is a trend to create new type-
setting engines that provide the best features of different existing typesetting
engines. Therefore, a Universal Typesetting Engine should incorporate all the
novelties that the various TEX-like derivatives have presented so far. In addi-
tion, such a system should be designed by taking into serious consideration all
aspects of modern software development and maintenance. However, our depar-
ture should not be too radical, in order to be able to use the existing codebase.
Let us now examine all these issues in turn.

3.1 Discussion of Features

Data Structures. TEX’s inherent limitations are due to the fact that it was
developed in a time when computer resources were quite scarce. In addition,
TEX was developed using the now outdated structured programming program
development methodology.

Nowadays, hardware imposes virtually no limits in design and development
of software. Also, new programming paradigms (e.g., aspect-oriented program-
ming [8], generative programming [2], etc.) and techniques (e.g., extreme pro-
gramming [1]) have emerged, which have substantially changed the way software
is designed and developed.

These remarks suggest that a new typesetting engine should be free of “arti-
ficial” limitations. Naturally, this is not enough as we have to leave behind the
outdated programming techniques and make use of modern techniques to ensure
the future of the Universal Typesetting Engine. Certainly, N77S was a step in the
right direction, but in the light of current developments in the area of software
engineering it is now a rather outdated piece of software.

New Primitive Commands. Modern document manipulation demands new ca-
pabilities that could not have been foreseen at the time TEX was created. A
modern typesetting engine should provide a number of new primitive commands
to meet the new challenges imposed by modern document preparation. Although
the new primitives introduced by e-TEX and solve certain problems (e.g., bidi-
rectional or, more generally, multidirectional typesetting), they are still unable
to tackle other issues, such as the inclusion of audio and/or animation.

Input Formats. For reasons of compatibility, the current input format must
be supported. At the same time the proliferation of XML and its applications
makes it more than mandatory to provide support for XML content. Currently,

Digital Typography in the New Millennium 9

XMLTEX is a TEX format that can be used to typeset validated XML files®. In
addition, XIATEX [6] is an effort to reconcile the TEX world with the XML world.
In particular, XETEX is an XML Document Type Definition (DTD) designed
to provide an XMLized syntax for ITEX. However, we should learn from the
mistakes of the past and make the system quite adaptable. This means that as
new document formats emerge, the system should be easily reconfigurable to
“comprehend” these new formats.

Output Formats. The pdfIATEX variant has become quite widespread, due to its
ability to directly produce output in a very popular document format (namely
Adobe’s Portable Document Format). Commercial versions of TEX are capable
of directly generating PostScript files without the need of any driver programs.
However, as in the case of the input formats, it is quite possible that new doc-
ument formats will appear. Thus, we need to make sure that these document
formats will find their way into TEX sooner or later.

In addition, XML initiatives such as MathML and SVG (Scalable Vector
Graphics) are increasingly common in electronic publishing of scientific docu-
ments (i.e., quite demanding documents from a typographical point of view).
Thus, it is absolutely necessary to be able to choose the output format(s) from a
reasonable list of options. For example, when one makes a drawing using KTEX’s
picture environment, it would be quite useful to have SVG output in addition
to the “standard” output. Currently, €2 can produce XML content, but it cannot
generate PDF files.

Innovative Ideas. The assorted typesetting engines that follow TEX'’s spirit are
not mere extensions of TEX. They have introduced a number of useful features
and/or capabilities. For example, Q’s QTPs and its ability to handle Unicode
input by default should certainly make their way into a new typesetting en-
gine. In addition, e-TEX’s new conditional primitives are quite useful in macro
programming.

Typesetting Algorithms. The paragraph breaking and hyphenation algorithms
in TEX make the difference when it comes to typographic quality. Robust and
adaptable as they are, these algorithms may still not produce satisfactory results
for all possible cases. Thus, it is obvious that we need a mechanism that will
adapt the algorithms so they can successfully handle such difficult cases.

Fonts. Typesetting means to put type (i.e., font glyphs) on paper. Currently,
only METAFONT fonts and PostScript Type 1 fonts can be used with all different
TEX derivatives. Although €2 is Unicode aware, still it cannot handle TrueType
fonts in a satisfactory degree (one has to resort to programs like ttf2tfm in
order to make use of these fonts). In addition, for new font formats such as

6 Validation should be handled by an external utility. After all, there are a number of
excellent tools that can accomplish this task and thus it is too demanding to ask for
the incorporation of this feature in a typesetting engine.

10 Christos K.K. Loverdos and Apostolos Syropoulos

OpenType and SVG fonts there is only experimental support, or none at all. A
new typesetting engine should provide font support in the form of plug-ins so
that support for new font formats could be easily provided.

Scripting. Scripting is widely accepted as a means of producing a larger soft-
ware product from smaller components by “gluing” them together. It plays a
significant role in producing flexible and open systems. Its realization is made
through the so-called “scripting languages”, which usually are different from the
language used to implement the individual software components.

One could advance the idea that scripting in TEX is possible by using TEX
the language itself. This is true to some extent, since TEX works in a form of
“interpretive mode” where expressions can be created and evaluated dynamically
at runtime — a feature providing the desired flexibility of scripting languages. But
TEX itself is a closed system, in that almost everything needs to be programmed
within TEX itself. This clearly does not lead to the desired openness.

A next generation typesetting engine should be made of components that can
be “glued” together using any popular scripting language. To be able to program
in one’s language of choice is a highly wanted feature. In fact, we believe it is
the only way to attract as many contributors as possible.

Development Method. Those software engineering techniques which have proven
successful in the development of real-world applications should form the core
of the program methodology which will be eventually used for the design and
implementation of a next generation typesetting engine. Obviously, generic pro-
gramming and extreme programming as well as aspect-oriented programming
should be closely examined in order to devise a suitable development method.

All the features mentioned above as well as the desired ones are summarized
in Table 1.

Table 1. Summary of features of TEX and its extensions.

TEX NTS e-TEX Q ITEX(3) Desired
implementation language|traditional| Java [traditional |traditional | traditional [perhaps scripting
architecture monolithic [modular?| monolithic | monolithic | monolithic modular
TEX compatibility 100% yes 100% 100% 100% via module
input transformations QTPs pluggable
Unicode (Babel) (Java) (Babel) true true
XML yes via package yes
typesetting algorithms TEX TEX-like | TpX-like | TEX-like | TgEX-like pluggable
scripting language TEX NTS (7)| e-TEX Q TeX any
output drivers dvi(ps,pdf)| dvi(?) |dvi(ps,pdf)|dvi(ps,pdf)|dvi(ps,pdf) any
TRIP-compatible yes almost e-TRIP yes yes yes (via module)
library mode no no no no no yes
daemon (server) mode no no no no no yes
programming community| < ETEX |1 person?| < TgX |very small big > BTEX

Digital Typography in the New Millennium 11

3.2 Architectural Abstractions

Roughly speaking, the Universal Typesetting Engine we are proposing in this
paper, is a project to design and, later, to implement a new system that will
support all the “good features” incorporated in various TEX derivatives plus
some novel ideas, which have not found their way in any existing TEX derivative.

Obviously, it is not enough to just propose the general features the new
system should have — we need to lay down the concrete design principles that
will govern the development of the system. A reasonable way to accomplish
this task is to identify the various concepts that are involved. These concepts
will make up the upper abstraction layer. By following a top-down analysis,
eventually, we will be in position to have a complete picture of what is needed
in order to proceed with the design of the system.

The next step in the design process is to choose a particular system architec-
ture. TEX and its derivatives are definitely monolithic systems. Other commonly
used system architectures include the microkernel and exokernel architectures,
both well-known from operating system research.

Microkernel Architecture. A microkernel-based design has a number of ad-
vantages. First, it is potentially more reliable than a conventional monolithic
architecture, as it allows for moving the major part of system functionality to
other components, which make use of the microkernel. Second, a microkernel
implements a flexible set of primitives, providing high level of abstraction,
while imposing little or no limitations on system architecture. Therefore,
building a system on top of an existing microkernel is significantly easier
than developing it from scratch.

Exokernel Architecture. Exokernels follow a radically different approach. As
with microkernels, they take as much out of the kernel as possible, but rather
than placing that code into external programs (mostly user-space servers) as
microkernels do, they place it into shared libraries that can be directly linked
into application code. Exokernels are extremely small, since they arbitrarily
limit their functionality to the protection and multiplexing of resources.

Both approaches have their pros and cons. We believe that a mixed approach
is the best solution. For example, we can have libraries capable of handling
the various font formats (e.g., Type 1, TrueType, OpenType, etc.) that will be
utilized by external programs that implement various aspects of the typesetting
process (e.g., generation of PostScript or PDF files). Let us now elaborate on the
architecture we are proposing. The underlying components are given in Figure 1.

The Typesetting Kernel (TK) is one of the two core components at the first
layer. It can be viewed as a “stripped-down” version of TEX, meaning that its
role as a piece of software is the orchestration of several typesetting activities.
A number of basic algorithms are included in this kernel both as abstract no-
tions — necessary for a general-purpose typesetting engine — and concrete imple-
mentations. So, TK incorporates the notions of paragraph and page breaking,
mathematical typesetting and is Unicode-aware. It must be emphasized that
TK “knows” the concept of paragraph breaking and the role it plays in typeset-

12 Christos K.K. Loverdos and Apostolos Syropoulos

2
N\
\ bibtex, makeindex

latex && bibtex && latex

Ly (Fonts){ﬁ\s) ¢ DMs)\E ses) (WP) Terms

TK Typesetting Kernel

T X ASK Active Scripting Kernel
. TEX’ TE}< TAs Typesetting Algorithms
Type 3, dvips + Type 1 DMs Document Models
SEs Scripting Engines
Ly HyP Hyphenation Patterns
\ WFs Workflows

TEX, e-TEX, Q

Fig. 1. The proposed microkernel-based layered architecture. The arrows show rough
correspondence between the several architectural abstractions and their counterparts
in existing monolithic typesetting engines.

ting but it is not bound to a specific paragraph breaking algorithm. The same
principle applies to all needed algorithms.

The Active Scripting Kernel (ASK) is the second of the core components and
the one that allows scripting at various levels, using a programming (scripting)
language of one’s choice. It is in essence a standardized way of communicating
between several languages (TEX, Perl, Python), achieved by providing a consis-
tent Application Programming Interface (APT). The most interesting property
of ASK is its activeness. This simply means that any extension programmed
in some language is visible to any other available languages, as long as they
adhere to the standard Active Scripting Kernel API. For example, an external
module/service written in Perl that provides a new page breaking algorithm is
not only visible but also available for immediate use from Python, C, etc.

Above TK and ASK, at the second layer, we find a collection of typesetting
abstractions.

Fonts are at the heart of any typesetting engine. It is evident that font archi-
tectures change with the passing of time, and the only way to allow for flexibility
in this part is to be open. Although there many different font formats, all are
used to define glyphs and their properties. So instead of directly supporting all
possible font formats, we propose the use of an abstract font format (much like
all font editors have their own internal font format). With the use of external
libraries that provide access to popular font formats (e.g., a Free Type library,
a Type 1 font library, etc.), it should be straightforward to support any existing
or future font format.

The various Typesetting Algorithms (TAs) — algorithms that implement a
particular typographic feature — should be coded using the Active Scripting
Kernel API. In a system providing the high degree of flexibility we are proposing,
it will be possible to exhibit, in the same document, the result of applying several
paragraph and page breaking algorithms. By simply changing a few runtime
parameters it will be possible to produce different typographic “flavors” of the
same document.

Digital Typography in the New Millennium 13

A Secripting Engine (SE) is the realization of the ASK APIs for a particular
scripting language. For reasons of uniformity, the TEX programming language
will be provided as a Scripting Engine, along with engines for Perl, Ruby and
Python. This will make all the existing TEX codebase available for immediate use
and it will provide for cooperation between existing IMTEX packages and future
enhancements in other languages. Thus, a level of 100% TEX compatibility will
be achieved, merely as a “side-effect” of the provided flexibility.

The idea of a Document Model (DM) concerns two specific points: The doc-
ument external representation, as it is “edited” for example in an editor, or
“saved” on a hard disk, and its internal representation, used by the typesetting
engine itself. It is clear that under this distinction, current BTEX documents
follow the (fictional) “IATEX Document Model”, XIATEX documents follow the
“XETEX document model” and an XML document with its corresponding DTD
follows an analogous “XML-+DTD Document Model”.

We strongly believe that how a document is written should be separated from
its processing. For the last part, an internal representation like the Abstract Syn-
tax Trees (ASTs) used in compiler technology is highly beneficial. One way to
think of DM is as the typographic equivalent of the Document Object Model
(DOM). That is, it will be a platform-neutral and language-neutral represen-
tation allowing scripts to dynamically access and update the content, structure
and style of documents.

Several Document Processors (DPs) may be applied to a specific document
before actual typesetting takes place. DPs are the analog of QTPs. By lever-
aging the scripting power of ASK, the representation expressiveness of DPs
is increased — as opposed to algorithmic expressiveness (Turing-completeness),
which is evident, e.g., in £2, but is not the sole issue.

The Workflows (WF') and Tools are at the highest architectural layer. Cur-
rently, there are a number of tools that may not produce a final typeset result,
but are important for the proper preparation of a document. For example, such
tools include bibliography, index and glossary generation tools. In the proposed
architecture, all these programs will take advantage of other architectural ab-
stractions — such as the Document Model or the Scripting Engines — in order to
be more closely integrated in the typesetting engine as a whole.

Of particular importance is the introduction of the Workflows notion. A
workflow is closely related to the operation or, to be more precise, cooperation
of several tools and the typesetting engine in the course of producing a type-
set document. In effect, a workflow specifies the series of execution (probably
conditional) steps and the respective inputs/outputs during the “preparation”
of a document. By introducing a workflow specification for each tool, we relieve
the user from manually specifying all the necessary actions in order to get a
“final” .pdf (or whatever output format has been requested). Instead, the user
will declaratively specify that the services of a tool are needed and the engine
will load the respective workflows, compose them and execute them.

14 Christos K.K. Loverdos and Apostolos Syropoulos

We shall give a workflow example concerning a BIBTpX-like tool. What we do
here is to transform our experience of using bibtex into declarations specifying
its behaviour in cooperation with latex:

WORKFLOW DEFINITION bibtex

SERVICE bibtex NEEDS latex
SERVICE bibtex INTRODUCES latex

In effect, this translates a hypothetical Makefile:

all:
latex mydoc
bibtex mydoc
latex mydoc

for the preparation of the fictitious mydoc . tex document into a declarative spec-
ification that is given only once as part of the bibtex tool!

3.3 On Design and Evolution

Recent advances in software engineering advocate the use of multidimensional
separation of concerns as a guiding design principle. Different concerns should be
handled at different parts of code and ideally should be separated. For example,
the representation of a document and its processing are two separate concerns
and should be treated as such. Their interaction is better specified out of their
individual specifications. Thus, we have introduced the Document Models no-
tion to cope with the existing TEX/ITEX base as well as any future document
representation.

Several architectural abstractions of Figure 1 are candidates to be specified
as “services” at different granularities. For example, any Tool of the third layer
can be thought of as a service that is registered with a naming authority and
discovered dynamically, for immediate use on demand. A TrueType Font Service,
regarding the second layer Font abstraction, is another example, this time more
of a fine-grained nature, in the sense that a Tool (coarse-grained service) utilizes
a Font (fine-grained service).

The proposed architecture makes special provisions for evolution by keeping
rigid design decisions to a minimum. Built-in Unicode awareness is such a notable
rigid design decision, but we feel that its incorporation is mandatory. Besides
that, the ideas of pluggable algorithms and scripting are ubiquitious and help
maintain the desired high degree of flexibility.

At the programming level, any style of design and development that promotes
evolution can be applied. In the previous section we have actually demonstrated
that the proposed architecture can even handle unanticipated evolution at the
workflow level: the bibtex tool workflow specification causes the execution of
an existing tool (latex) but we have neither altered any workflow for latex nor
does latex need to know that “something new” is using it. In effect, we have
introduced (the use of the keyword INTRODUCE was deliberate) a new aspect [8].

Digital Typography in the New Millennium 15

4 Conclusions and Future Work

In this paper we have reviewed the most widespread modern approaches to
extending TEX, THE typesetting engine. After analyzing weaknesses of the ap-
proaches and the existing support for several features, we have presented our
views on the architecture of an open and flexible typesetting engine.

We have laid down the basic architectural abstractions and discussed their
need and purpose. Of course, the work is still at the beginning stages and we
are now working on refining the ideas and evaluating design and implementation
approaches.

The introduction of the Active Scripting Kernel is of prime importance and
there is ongoing work to completely specify a) the form of a standard procedural
API and b) support for other programming styles, including object-oriented and
functional programming. This way, an object may for example take advantage
of an algorithm that is better described in a functional form. There are paral-
lel plans for transforming TEX into a Scripting Engine and at the same time
providing Engines powered by Perl and Python.

We are also investigating the application of the workflow approach at several
parts in the architecture other than the interaction among tools. This, in turn,
may raise the need for the incorporation of a Workflow Kernel at the core layer,
along with the Typesetting Kernel and the Active Scripting Kernel.

References

1. chromatic. FExtreme Programming Pocket Guide. O’Reilly & Associates, Se-
bastopol, CA, USA, 2003.

2. Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming: Methods,
Tools, and Applications. Addison—Wesley Publ. Co., Reading, MA, USA, 2002.

3. Victor Eijkhout. TEX by Topic. http://wuw.cs.utk.edu/~eijkhout/tbt

4. e-Q) Project home page. http://www.ctan.org/tex-archive/systems/eomega/

5. N78 FAQ. http://wuw.ctan.org/tex-archive/info/NTS-FAQ

6. Yannis Haralambous and John Plaice. Omega, OpenType and the XML World.
The 24th Annual Meeting and Conference of the TeX Users Group, TUG 2003.

7. Yannis Haralambous and John Plaice. Traitement automatique des langues orien-
tales et composition sous Omega. Cahiers GUTenberg, pages 139-166, 2001.

8. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In M. Aksit
and S. Matsuoka, editors, ECOOP ’97 — Object-Oriented Programming: 11th Eu-
ropean Conference, Jyvaskyld, Finland, June 1997. Proceedings, number 1241 in
Lecture Notes in Computer Science, pages 220—242. Springer-Verlag, Berlin, 1997.

9. Donald Erwin Knuth. The TgXbook. Addison-Wesley, 1984.

10. Leslie Lamport. ETgX: A Document Preparation System. Addison—Wesley Publ.
Co., Reading, MA, USA, 2nd edition, 1994.

11. ETEX3 Project home page. http://www.latex-project.org/latex3.html.

12. Richard Palais. Position Paper on the future of TEX. http://wuw.loria.
fr/services/tex/moteurs/nts-9207.dvi, reached from http://tex.loria.fr/
english/moteurs.html, October 1992.

16

13.

14.
15.

16.

17.

18.

19.

Christos K.K. Loverdos and Apostolos Syropoulos

PRAGMA Advanced Document Engineering. ConTEXt home page.
http://wuw.pragma-ade.com/

NTS Project home page. http://wuw.dante.de/projects/nts/

Eric E. Raymond. The Cathedral and the Bazaar.
http://wuw.catb.org/~esr/writings/cathedral-bazaar/

Apostolos Syropoulos, Antonis Tsolomitis, and Nick Sofroniou. Digital Typography
Using B'TgX. Springer-Verlag, New York, NY, USA, 2003.

N7TS Team and Peter Breitenlohner. The e-TEX manual, Version 2. MAPS,
(20):248-263, 1998.

Han Thé Thanh, Sebastian Rahtz, and Hans Hagen. The pdfTEX users manual.
MAPS, (22):94-114, 1999.

Jiri Zlatuska. N7S: Programming Languages and Paradigms. EuroTEX 1999,
http://www.uni-giessen.de/partosch/eurotex99/zlatuska.pdf

	1 Introduction
	2 A Better \TeX?
	2.1 \TeX the Program
	2.2 The \LaTeX Format
	2.3 {\cal NTS}: The New Typesetting System
	2.4 $\varepsilon -\TeX$
	2.5 Ω
	2.6 pdf\TeX

	3 Towards a Universal Typesetting Engine
	3.1 Discussion of Features
	3.2 Architectural Abstractions
	3.3 On Design and Evolution

	4 Conclusions and Future Work
	References

