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Abstract Any algebraic structure can be viewed as a labeled transition system
and we demonstrate this thesis by representing MV-algebras as labeled transition
systems. We do this by rigorously defining the representation mechanism. The gen-

erated LTS can be depicted by transition multi-graphs and we provide some simple
examples.
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1 Introduction

In many instances it is useful to be able to view a particular mathematical structure
in an unconventional way. For this purpose, we usually employ the mathematical rep-
resentation of one mathematical structure in terms of another one. In other words,
we employ the language of Category Theory (e.g., see [McL98]) to define collections
of similar entities and transformations between them. And if this transformation has
a number of properties, then we say that we have a representation of one mathe-
matical structure in terms of another one. In this paper, we show that MV-algebras,
in particular, and algebraic structures, in general, can be represented as labeled
transition systems. We employ, MV-algebras merely as a demonstration tool.

1.1 Labeled Transition Systems

Labeled transition systems (or LTS, for short) are a frequently used model of concur-
rency [Mil99]. They consist of a set of states and set of transitions from one state to
another. The thesis of this paper is that all algebraic structures can be represented
as LTS and we show this by representing MV-algebras as LTS.

1.2 MV-algebras

MV-algebras are models of Lukasiewicz’s infinite-valued propositional logic (see, e.g.,
[Mun00]). An MV-algebra is a set with an associative, commutative operation B, a
neutral element 0, and a unary negation operation —. To pass from MV-algebras to
Lukasiewicz’s infinite-valued propositional logic, one writes —~z — y instead of z By
and rewrites every valid equation z = y as a tautology = « y.

1.3 Structure of the Paper

We start with an elementary introduction to MV-algebras and the basic theory of
LTS. Then we describe the representation of MV-algebras as LTS and we study the
properties of this representation. The generated LTS can be depicted by transition
multi-graphs, and show how this can be done by two simple examples. Finally, we
conclude with some remarks concerning our work.

2 Short Introduction to the theory of MV-algebras
In this section we define MV-algebras and homomorphisms between them.

Definition 2.1 An MV-algebra is a quadruple (A, 8, —, 0), where B, —, and O are
a binary, a unary and constant, respectively, having the following properties:
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i) zB(yHBH2)=(zBy)Bz,

i) cBy=yHz,

iii) 28O =z,

iv) -~z =z,

v) 2B -0 = -0, and

vi) ~(-zBy)By=~(~yBz)Bz.

Usually, an MV-algebra (4,8, —,0), is denoted by the name of its underlying set,
e.g., A.

Definition 2.2 A function h : A — B, between two MV-algebras A and B, is a
homomorphism iff it has the following properties for each z,y € A:

i) h(04) =0p,
ii) h(zBy) = h(z) B h(y), and
iii) h(-z) = ~'h(z).

Since homomorphisms are actually functions, they compose the usual way. In addi-
tion, the identity homomorphism is just the identify function of the underlying set.
So, we can construct a category with objects all the MV-algebras and with arrows
the homomorphisms between them. We call this category MV.

3 MV-algebras and LTS

An LTS consists of a set of states, with an initial state, together with transitions
between states which are labeled to specify the kind of events they represent.

Deflnition 3.1 A LTS is a structure (S, 4, L, tran), where
e S is a set of states with initial state 1,
e L is a set of labels, and

e tran C S x L x S is the transition relation. Usually a transition (s,a,s’) is
denoted s — s'.

Given two LTS Ty = (So,%, Lo, trang) and T3 = (Siy,%, L1, tran;), a morphism
f:To — T is a pair f = (0, ) where
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e 0 : Sy — 51, is a function between sets of states, and

e \:Lg—, Ly, is a partial function between sets of labels such that

o(ip) =1 and (1)
(s,a,s') € trang = (0(s), AM(a),a(s')) € trany,. (2)

Given a third LTS T> = (S2, i2, L2, trang) and a morphism g = (¢/,N) : T} —
Ty, their composite is the morphism f o g = (0 0 ¢’, A o X’). Obviously, morphism
composition is an associative operation since function composition is an associative
operation. For an LTS Ty = (So, %0, Lo, trang) the morphism idy, = (ids,,idL,),
where idg, is the identity function of the set of states and id, is the identity function
of the set of labels, vacuously satisfy equations 1 and 2. It is now trivial to define
the category LTS with objects the LTS and with arrows the morphisms between the
LTS. We now proceed with the definition of the functor ¥ that maps MV-algebras
to LTS. We start with object part of the functor:

Definition 3.2 Given an MV-algebra (A,H, —,0), the functor ¥ maps A to the
LTS (A,0, A, Ag), where (s,a,5') € Ag iff sBHa =¢'.
And now we define the arrow part of V:

Definition 3.3 If h : A — B is homomorphism between two MV-algebras A and
B, then ¥(h) = (h, h).

Theorem 3.1 Functor ¥ is faithful and injective on objects.

Proof. That the functor W is injective on objects is obvious from its definition.
Next, we prove that the functor is faithful. Suppose that A and B are two MV-
algebras and that h;, hy : A — B are two homomorphisms, then

Y(h) = Y(he)=
(h’lahl) = (h21h2) =
hi = ho

Which proves that the ¥ is faithful. O

Example 3.1 If we consider the set D = {0,1/2,1} and the operations a B b =
min(1,a + b) and —a = 1 — a, then (D,H, —,0) is an MV-algebra. The LTS system
generated by ¥(D) is depicted below:
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In the above (non-deterministic) automaton we have chosen 1 to be the accepting
state. Note, that for any MV-algebra the generated LTS can have -0 as its accepting
state. Of course, we can choose any other node to be the accepting state, but -0
is the only one to which there transitions from any other node, while there no
transitions from this node to any other node. It is interesting to see what is the
accepting language of this automaton. For reasons of clarity, we set a =0, b = 1/2
and ¢ = 1, then the language generated isa*-(c- ((a+b+¢)*-€) +b-(b* - (a-((a +
b+c)*-e)+b-((a+b+0c)*-¢€))).

4 Discussion

Each MV-algebra is equipped with two additional operations: z © y oo =(—~z B —y)
and 20y df z®-. It is not difficult to generate an LTS from the ® operation of an
MV-algebra. Actually, it is now a straightforward exercise to define a new functor
V¥ that will map a given MV-algebra A to the LTS ¥(A) having the property that
s — ¢ iff s®a = §'. The arrow part of the functor is identical to that of the functor

¥ and of course ¥ has the same properties as ¥. (Note that h(z®y) = h(z) @ hy.)
Example 4.1 We consider the MV-algebra with underlying set the set £ = {0,1/3,2/3,1}

and the operations of example 3.1. Then the following transition graph depicts the
LTS generated by this algebra:

1/3

0,1/3,2/3,1
. 2/3

=@==0

Note, that it is possible to use the labels —=1/3 and -0 instead of 2/3 and 1 and
so to have a input and output labels. The following transition graph depicts the
automaton generated by Vo (E):

1/3
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0,1/3,2/3,1 a
0
' 2/3 ﬂ
0 ®

1/3
1/3

The above two automata have the same set of agents and of course the same
set of labels. It is interesting to note that whenever there is a transition p — p’ in
the first LTS, then the transition p’ — p exists in the second LTS. However, it is
not clear whether this observation can be generalized and whether there is any deep
meaning in this similarity. But, it holds that this observation is valid at least for the
MV-algebras that are sub-algebras of the algebra defined in the unit interval.

5 Conclusions

We have defined the functor ¥ by means of it we map every MV-algebra to a LTS.
In general, LTS are a frequently used model of concurrency and so we have actually
managed to make MV-algebras models of a particular class of concurrent systems.
As we have already mentioned in the introduction, MV-algebras are a model of
Lukasiewicz’s infinite-valued propositional logic. So, we have LTS that are models
of a particularly interesting logic. The connection between logic and concurrency is
something that was evident only in “classical” logics like linear logic [Gir95]. The
present work extends this connection to many-valued logics and hopefully will allow
researchers to investigate further this connection.
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