
Bottom in the Imperative World

Apos to los Syropou los *
A l e x a n d r o s Karakos t

A b s t r a c t

Bottom is used in functional programming languages to denote abnormal situations. We propose
the incorporation of this value in any existing imperative language. We show how this can be done
and finally what are the benefits of the bottom incorporation in any imperative language.

1 Introduction

The value ± (pronounced bot tom) refers to situations where something abnormal happens, i.e. _L - 1
1 Bot tom has been successfully incorporated in some existing functional p rogramming languages as an
alternative exception handling mechanism. In LML [AJ91] and Haskell [HPJ+91] bo t tom is implemented
as a polymorphic function with type S t r ing ~ a , which terminates program execution and prints onto
the output med ium its argument (in LML this function is called fa i l and in Haskell e r r o r) . In SISAL 2.0
[BCFO92] bo t tom is denoted by the keyword e r r o r and some type specifier at tached to it. The function
i s_e r ro r determines if some expression evaluates to bot tom. A SISAL 2.0 implementat ion may choose
either to allow value propagat ion or to terminate program execution when such a value is detected. To the
extend we do know b o t t o m has not been incorporated in any existing imperat ive p rogramming language.

In this work we describe the general properties of bo t tom and show how it is possible to incorporated
it in any existing imperat ive language. Finally we demonstrate how bo t tom may be used in an imperat ive
language.

2 General Properties

Let D± denote a da ta type tha t includes the bo t tom value and K a partial ordering on D± then,

V d : D ± , _l_ E d

Consequently it is possible to compare a data value against 1 .
Suppose tha t @ is a binary operator with type A± × B± ~ C± and that 6 is an unary operator with

type A± ~ B± then, 2 the following holds:

V a : A L, b:BjL : a ® -LB = -LA @ b = -Lc and O-I-A = -I-B

The above property holds for operators with arity greater than 2, but not for any da ta structuring operator.
Especially for the da ta type T={_L, if, t t} bo t tom denotes the fact that we are not sure if something

holds or if it does not. Consequently the t ruth tables are augmented with the following cases:

*366, 28th October str., GR-671 00 XANTHI, GREECE
t Democritus University of Thrace, Department of Electrical and Computer Engineering, GR-671 00 XANTHI, GREECE,

emaih karakos@xanthi.cc.duth.gr
1 Bottom is used in domain theory to describe recursion in a purely mathematical way.
~Note that A.t., B.t., and Ca. are not necessarily different

ACM SIGPLAN Notices, Volume 30, No. 5 May 1995
18

f tA J_. = _L_ A t t = _L

f f A _L = _L A f f = f f
t t V _k = J~ V t f = t f

f f v z = ± v f f = J _
= Jh = ..L

where A denotes logical conjunction, V logical disjunction, and --1 logical negation.

3 B o t t o m in an Imperat ive Language

Before making any a t tempt to incorporate tile bo t tom value in an existing language we must answer the
following two questions:

1. Should every da ta type have its own distinguished bot tom value or not?

2. Which control constructs should be mainly modified in order to allow proper use of the bo t tom
value?

We believe that every da ta type should have a distinguished bot tom value. This approach prevents us from
type errors and consequently from any improper use of this value. On the other hand, a "typeless" approach
enables someone to write meaningless things, e.g. ~=ni l . Certainly these bo t tom values must have the
general properties described in section 2. So, for example, a function that has an argument which evaluates
to bo t tom, evaluates itself to bot tom. The control constructs that should be mainly modified are those that
involve logical tests, i.e., branching and iteration constructs. We star t our discussion by considering the
i f - ins t ruct ion, the main branching instruction. We propose that the i f - ins t ruct ion should be augmented
by a new branch that would handle the bo t tom case. The bot tom case should be optional and it could be
present only if the traditional "else" branch is present or in BNF:

if-instruction ::= if-part [elsef-part [elseb-part]] "end"
if-part ::= " i f " test "then" I1
elsef-part ::= "elsef" I2
elseb-part ::= "elseb" I3

where Ii denotes an instruction sequence. It is a straight-forward exercise to provide an operational
semantics for this new instruction. Let I denote the instruction i f b t hen I1 e l s e f I~ e l s e b I3 end
and let p denote the store then, the following must hold:

(b, p) , (~t, p}
(z, p) , (z, p)

{b, p) ~ (f f , p)
(z, p) , (I2 p}
(b, p) ~ (±, p}
(z, z) ,, (13 z)

Accordingly the case-instruct ion should have an elseb branch to catch abnormal situation, the way the

extended i f - ins t ruc t ion does.
I t seems tha t iterative constructs need a _l_-catcher too. Here we will consider only the tradit ional

while- instruct ion. We propose an augmented while-instruction that can deal with abnormal situations.
We feel that the following form is quite reasonable:

19

while b do

except I i

IS

end

where b is a boolean expression, I denotes what should be done when b evaluates to .L, and finally IS is
the normal instruction sequence. When an abnormal situation is encountered I is executed and then the
loop abor ts execution. Some may object to this, but we feel that a t t empt ing another loop i teration may
lead to a "vicious circle". Similar modifications should be done to the various other i teration constructs
to allow the proper use of the bo t tom value.

A final issue that must be settled is the behavior of functions and procedures when they have arguments
tha t evaluate to _J_ (pass-by-value), or have arguments that are references to storage cells tha t contain the
bo t t om value (pass-by-ret~rence). Any function returns _L as soon as it detects that an actual argument
either evaluates to bo t t om or is the address of some bo t tom value. Accordingly a procedure terminates
its execution without affecting the global state of the entire program.

4 Using b o t t o m

Bot tom is not of theoretical interest only but it can be used in practical ways. Here we outline two possible
uses of bo t tom.

An acceptable compiler is one that detects as many as possible syntactic or type errors in a source
program. Accordingly, we feel that an executable file should be able to detect as many as possible run-t ime
errors. It is possible to achieve such a behavior by making a run-t ime error a legal value (viz., bot tom) .
Fur thermore this approach to run-t ime errors, may lead to sophisticated debugging tools.

System prototyping is another area where bo t tom may find a use. Suppose that in some program, P,
the value of the variable F a c t o r is updated by means of the following instruction:

F a c t o r : = m a x (a / b , c / d)

In a conventional language we must check that both b and d are not equal to zero in order to prevent
a run-t ime error. On the other hand, being able to compare F a c t o r against bo t tom makes code more
compact and leaves us space to thing about impor tan t issues and to ignore, for the moment , these "minor"
issues.

References

[A J91]

[BCFO92]

Lennart Augustsson and Thomas Johnsson. Lazy ML user's manual . Technical report ,
Chalmers University of Technology and University of Gothenburg, 1991.

A. P. W. Bohm, David C. Cann, John T. Feo, and Rodney R. Oldehoeft. SISAL reference man-
ual. Technical report, Colorado State University and Lawrence Livermore National Laboratory,
1992.

[HPJ+91] Paul Hudak, Simon Peyton Jones, et al. Report on the programming language Haskell. Tech-
nical report, Yale University and University of Glasgow, 1991.

20

