Bottom in the Imperative World

Apostolos Syropoulos *
Alexandros Karakos!

Abstract
Bottom is used in functional programming languages to denote abnormal situations. We propose
the incorporation of this value in any existing imperative language. We show how this can be done
and finally what are the benefits of the bottom incorporation in any imperative language.

1 Introduction

The value L (pronounced bottom) refers to situations where something abnormal happens, ie. L = %

1 Bottom has been successfully incorporated in some existing functional programming languages as an
alternative exception handling mechanism. In LML [AJ91] and Haskell [HPJ*91] bottom is implemented
as a polymorphic function with type String — o, which terminates program execution and prints onto
the output medium its argument (in LML this function is called fail and in Haskell error). In SISAL 2.0
[BCFO92] bottom is denoted by the keyword error and some type specifier attached to it. The function
is_error determines if some expression evaluates to bottom. A SISAL 2.0 implementation may choose
either to allow value propagation or to terminate program execution when such a value is detected. To the
extend we do know bottom has not been incorporated in any existing imperative programming language.

In this work we describe the general properties of bottom and show how it is possible to incorporated
it in any existing imperative language. Finally we demonstrate how bottom may be used in an imperative

language.

2 General Properties
Let D, denote a data type that includes the bottom value and C a partial ordering on Dy then,
Vd: DJ_, 1 E d

Consequently it is possible to compare a data value against L.
Suppose that @ is a binary operator with type A, x By — C. and that 8 is an unary operator with
type Ay — Bj then,? the following holds:

Va:Ai,b:B :a®lp=la®b=l1lcandfly=1p

The above property holds for operators with arity greater than 2, but not for any data structuring operator.
Especially for the data type T={L, ff, ¢t} bottom denotes the fact that we are not sure if something
holds or if it does not. Consequently the truth tables are augmented with the following cases:

*366, 28th October str., GR-671 00 XANTHI, GREECE

tDemocritus University of Thrace, Department of Electrical and Computer Engineering, GR-671 00 XANTHI, GREECE,
email: karakos@xanthi.cc.duth.gr

1Bottom is used in domain theory to describe recursion in a purely mathematical way.

2Note that A, By, and C; are not necessarily different

18 ACM SIGPLAN Notices, Volume 30, No. 5 May 1995

HAL= L A= L
fAl=LAfi=f
v i=1LvVvii=1t
Jvi=1vff=_1
-L=41

where A denotes logical conjunction, V logical disjunction, and — logical negation.

3 Bottom in an Imperative Language

Before making any attempt to incorporate the bottom value in an existing language we must answer the
following two questions:

1. Should every data type have its own distinguished bottom value or not?

2. Which control constructs should be mainly modified in order to allow proper use of the bottom
value?

We believe that every data type should have a distinguished bottom value. This approach prevents us from
type errors and consequently from any improper use of this value. On the other hand, a “typeless” approach
enables someone to write meaningless things, e.g. $=nil. Certainly these bottom values must have the
general properties described in section 2. So, for example, a function that has an argument which evaluates
to bottom, evaluates itself to bottom. The control constructs that should be mainly modified are those that
involve logical tests, 1.e., branching and iteration constructs. We start our discussion by considering the
if-instruction, the main branching instruction. We propose that the if-instruction should be augmented
by a new branch that would handle the bottom case. The bottom case should be optional and it could be

present only if the traditional “else” branch is present or in BNF:

if-instruction ::= if-part [elsef-part [elseb-part]] “end”

if-part = “if” test “then” I
elsef-part = “elsef” 1
elseb-part 1= “elseb” I3

where I; denotes an instruction sequence. It is a straight-forward exercise to provide an operational
semantics for this new instruction. Let I denote the instruction if b then I; elsef I, elseb I3 end
and let p denote the store then, the following must hold:

<b’ ,0> — <tt7 /’)
(I, p) — (Lip)
(b, p) — (ff, p)

p) — (Lap)
(b, p) — (L, p)
(I, p) — (I3p)

Accordingly the case-instruction should have an elseb branch to catch abnormal situation, the way the

extended if-instruction does. ' ' N
It seems that iterative constructs need a l-catcher too. Here we will consider only the traditional

while-instruction. We propose an augmented while-instruction that can deal with abnormal situations.
We feel that the following form is quite reasonable:

19

while b do
except I |
Is

end

where b is a boolean expression, I denotes what should be done when b evaluates to 1, and finally I8 is
the normal instruction sequence. When an abnormal situation is encountered I is executed and then the
loop aborts execution. Some may object to this, but we feel that attempting another loop iteration may
lead to a “vicious circle”. Similar modifications should be done to the various other iteration constructs
to allow the proper use of the bottom value.

A final issue that must be settled is the behavior of functions and procedures when they have arguments
that evaluate to L (pass-by-value), or have arguments that are references to storage cells that contain the
bottom value (pass-by-reference). Any function returns L as soon as it detects that an actual argument
either evaluates to bottom or is the address of some bottom value. Accordingly a procedure terminates
its execution without affecting the global state of the entire program.

4 Using bottom

Bottom is not of theoretical interest only but it can be used in practical ways. Here we outline two possible
uses of bottom.

An acceptable compiler is one that detects as many as possible syntactic or type errors in a source
program. Accordingly, we feel that an executable file should be able to detect as many as possible run-time
errors. It is possible to achieve such a behavior by making a run-time error a legal value (viz., bottom).
Furthermore this approach to run-time errors, may lead to sophisticated debugging tools.

System prototyping is another area where bottom may find a use. Suppose that in some program, P,
the value of the variable Factor is updated by means of the following instruction:

Factor:=max(a/b, c/d)

In a conventional language we must check that both b and d are not equal to zero in order to prevent
a run-time error. On the other hand, being able to compare Factor against bottom makes code more
compact and leaves us space to thing about important issues and to ignore, for the moment, these “minor”
issues.

References

[AJ91] Lennart Augustsson and Thomas Johnsson. Lazy ML user’s manual. Technical report,
Chalmers University of Technology and University of Gothenburg, 1991.

[BCF092] A.P. W. Bohm, David C. Cann, John T. Feo, and Rodney R. Oldehoeft. SISAL reference man-
ual. Technical report, Colorado State University and Lawrence Livermore National Laboratory,
1992.

[HPJ*T91] Paul Hudak, Simon Peyton Jones, et al. Report on the programming language Haskell. Tech-
nical report, Yale University and University of Glasgow, 1991.

20

