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Originally, the word computing was synonymous 

with counting and reckoning, and a computer was an 

expert at calculation. In the 1950s with the advent of 

the (electronic) computer, the meaning of the word 

computing was broadened to include the operation 

and use of these machines, the processes carried out 

within the computer hardware itself, and the theoretical 

concepts governing them.  These theoretical concepts  

fi nd their roots in the Turing machine [1], that is, 

a conceptual computing device that was devised 

by Alan Turing, the great British logician, in the mid 

1930s. In essence, Turing showed that computation  is 

a process of symbol manipulation, since his machine 

is dully processing symbols that are printed on a tape. 

More specifi cally, a Turing machine consists of paper 

tape divided into cells and a scanning head that moves 

across the tape and can read and write symbols on 

each cell. At any given moment, a machine is in a 

state. Depending on the state the machine is and the 

contents of the cell that is currently being scanned by 

the scanning head, the machine enters a new state 

and either replaces the contents of the cell or moves 

to the cell that is either to the left or to the right of 

the cell being scanned. At each moment, the machine 

consults the controlling device to determine what to 

do next. By using a technique, which was developed 

by Kurt Gödel, the famous Austrian mathematician, 

Turing had shown that it is possible to “construct” 

a universal machine, which would take as input the 

specifi cation of a machine together with its input,  that 

is capable of solving a great number of problems. The 

importance of this universal machine is so great that 

some thinkers claim that modern computers are in 

fact realizations of it. However,  this claim is clearly 

an exaggeration as modern computers are able to 

interact whereas Turing machines do not  interact 

with their environment.

Despite the fact that the Turing machine is not 

the only model of computation, still it is the most 

widely known model. There are other models that 

equally interesting. For example, P systems [2], which 

have been proposed by  Gheorghe P un, is a model of 

computation inspired by the way living cells function. 

Basically, a P system is structure that consists of nested, 

porous membranes that contain indistinguishable 

copies of objects. Attached to each compartment is 

a set of rewrite rules, that is, equations that roughly 

specify how the contents of a compartment should be 

modifi ed (strictly speaking, a rewrite rule is a method 

to transform a character string into a new one; for 

example, the Unix sed utility is a program that allows 

users to implement simple rewrite rules). In particular, 

such rules may specify that copies of certain objects 

should be deleted or moved to another compartment  

or that copies of objects should be introduced from 

outside or be created out of thin air. Rules are applied 

in parallel in such a way that only optimal output is 

generated. When there is no more activity, the result 

of the computation is equal to the number of  (copies 

of the) objects found in a designated compartment—

the output compartment. P systems operate in a 

massively parallel way while they  can interact with 

their environment.

A basic assumption of both Turing machines and 

P systems  is that all operations are exact. In different 

words, vagueness is taken seriously into account. It is 

true that there are probabilistic versions of both Turing 

machines and P systems, but this is not the kind of 

vagueness that offers a new insight. On the other had, 

although fuzziness is basic expression of vagueness, 

still its use in models of computation is largely ignored 

by most computers scientists. But what exactly is 

fuzziness?
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world. And this assumption has affected the  way real computers are being built. 
By introducing fuzziness to models of computation, one aims to develop models of 
computation that are closer to reality.  The text that follows is a brief survey of some 
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Fuzzy set theory was developed by 

Lotfi  A. Zadeh [3] who had the ingenious 

idea to defi ne an extension of the notion of 

a set where elements belong to a degree. In 

particular, given a collection of objects,   one 

can assign a membership degree, which is 

usually a number greater or equal to zero 

or less than or equal to one,  to each object 

to form a fuzzy subset of this collection. As 

a concrete example, consider a group of 

people. Then we can form the fuzzy subset 

of tall people of this group. Depending on 

the height of the people and our knowledge 

of the height of  people, in general, one can 

form this fuzzy subset. In the most general 

case, one can argue that the membership 

degrees are not algorithmic in nature. On 

the contrary, one could say that they are 

based on the subjective judgement of some 

expert.  

Fuzzy sets have been successfully 

used in various applications and that is 

why they are particularly “popular” among 

engineers. However, not everyone shares 

this enthusiasm. Indeed, there are many 

thinkers who believe that statements like 

Serena is tall to a degree of 0.70 are basically 

elementary mistakes of logic. These thinkers 

propose that statements like this can be 

rephrased as Serena is 70% tall and in this 

case the statement is either true or false  

In the fi rst statement we actually say that 

Serena is tall and the  truth degree of this 

statement is 0.70, where 1 denotes absolute 

truth.  The interesting thing is that one can 

use statements like this in (fuzzy) inference 

rules to make deductions, something not 

possible with the exact statement above.  In 

other words, the real difference between the 

two approaches is in the denotation of the 

two statements.

Zadeh believes that probability 

theory and fuzzy set theory are rather 

complementary in that one can use fuzzy 

sets in cases where probability theory is 

not useful and vice versa. Others believe 

that fuzzy set theory is more fundamental 

than probability theory and randomness. 

Interestingly, the recent proof   of the  “Free 

Will Theorem” by John Horton Conway 

and Simon Kochen  has revealed that [I]

f experimenters have a certain property, then 

spin 1 particles have exactly the same property. 

Since this property for experimenters is an 

instance of what is usually called “free will” we 

fi nd it appropriate to use the same term also 

for particles [4, p. 1444]. Interestingly, they 

derived their result without using probability 

theory or randomness, while they conclude 

that randomness is not needed. But this 

does not exclude vagueness as a property 

of this world, thus, fuzziness can be used to 

reason about vague things. These remarks 

make  it clear that models of computation 

based on fuzzy set theory are closer to reality

than anything else. In the rest of this article, 

I will briefl y present fuzzy Turing machines 

and fuzzy P systems, which are the most 

promising models of fuzzy computation.

Fuzzy Turing Machines Eugene  S. 

Santos [5] is the fi rst researcher who 

formalized fuzzy Turing machines. However, 

it was Zadeh that spoke fi rst about fuzzy 

algorithms [6]. In the most general case, 

a fuzzy Turing machine is one where the 

transition from one confi guration (i.e., 

the state the machine is together with the 

information regarding the cell that is being 

scanned and the information contained in 

the cell) to another confi guration (i.e., the 

new state that the machine enters, what has 

been written in the cell and which direction 

the scanning head has moved) is associated 

with truth degree. In the end, a fuzzy Turing 

machine computes a result with some 

plausibility degree.  The important question 

concerning fuzzy Turing machines is whether 

they can solve problems that their non-

fuzzy counterparts cannot. Indeed, there are 

problems that cannot be solved using Turing 

machines. For example, due to Turing’s work 

on the halting problem, we know that when 

a program gets stalled, a computer program 

cannot say whether it has entered an infi nite 

loop or not. Now, Jiří Wiedermann [7], 

has  shown that fuzzy Turing machines can 

solve problems that cannot be solved by 

an ordinary Turing machine. In particular, 

it seems that fuzzy Turing machines can 

decide whether problems like Goldbach's 

conjecture is true or not. This conjecture 

asks whether  every even integer greater 

than 2 is a Goldbach number, that is, a 

number that can be expressed as the sum 

of two primes. Naturally, one may ask why 

we do not use them to solve such problems. 

The answer is very simple: we need to 

program the machine to solve the problem!  

Thus, what Wiedermann claims is that 

we can program the machine to solve the 

problem but he does not offer a solution to 

any particular problem. Stricktly speaking,  

Wiedermann claims that fuzzy Turing 

machines are actually hypermachines [8], 

that is, machines that can solve problems no 

Turing machine can solve.

Fuzzy P Systems Since vagueness  is 

basic property of our world, it makes sense 

to expect biological systems to be vague. 

Thus, a fuzzy version of P systems is model 

of computation that is closer to reality. 

Fuzzy P systems have been introduced 

by this author [9]. In order to explain how 

these systems operate, it is necessary to say 

a few things about fuzzy multisets and fuzzy 

rewrite rules.

A multiset [10] is as generalization 

of the concept of a set. While ordinary 

sets contain different elements, a multiset 

contains copies of different elements. For 

example, {1,1,2,2,2,3,4,4,,4} is a multiset 

that contains two copies of “1,” three copies 

of “2,” one copy of “3,” and three copies of 

“4.” Typically, it is assumed that the number 

of copies is fi nite.  Fuzzy multisets have been 

introduced by   Ronald R. Yager [12]. In fact 

they are generalization of both ordinary 

sets and multisets—different number of 

copies of elements may belong to different 

degrees. This means, that it is possible to 

have three copies of element “x” where 

each of them belongs to the set with degree 

0.62 and seven copies of “x” that belong 

to the set with degree 0.81! Although this 

may seem weird, still it is quite possible to 

fi nd real world examples where this makes 

sense. Nevertheless, for our purpose we 

need a restricted form of fuzzy multisets, 

that I have coined mutli-fuzzy sets, where it 

is possible to have only one set of copies 

for each element that, naturally, belong 

to the set to a degree. Usually, the term 

cardinality refers  to the number of elements 

of some set. In the case of a multi-fuzzy set, 

the cardinality is the sum of  all element 

occurrences, where for each element the 

occurrence is the product of the number of 

copies of this element  times its membership 

degree.  Now, a fuzzy rewrite rule is one that 

it is possible (not probable!) to transform 

a character string into another one with a 

specifi c plausibility degree.

Suppose that we have a membrane 

structure and each compartment is 

populated with a multi-fuzzy set. In 

addition, assume that each compartment is 

associated with a fi nite number of multiset 

rewriting rules. Assume that the degree 

to which the n copies of a belong to a 

designated compartment A is i; also the 

degree to which the m copies of a belong 

to a designated compartment B is j. If there 

is a rule that moves as from A to B, then, 

after using this rule, the degree to which 

the compartment B will contain a multi-

fuzzy set with n + m copies of as will be 

equal to max{i, j} (i.e., we sum up the two 

multi-fuzzy sets). In the end, the result of 

the computation is equal to the cardinality 

of the output compartment. P systems with 

fuzzy data produce, in general, real positive 

numbers and so, unexpectedly, extend their 

computational power.

The following picture depicts a simple 

example of P system with fuzzy data:
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This P system contains n objects in 

compartment 1, which will be transferred 

into compartment 2.  The  cardinality of the 

multi-fuzzy set contained in compartment 

2 is equal to n/m. Thus, the result of this 

particular computation is a positive rational 

number. However, there is nothing that 

prevents one from computing any real 

number, if we assume that objects may 

have real numbers as membership degrees. 

Indeed, the following theorem makes this 

explicit:

Theorem. P systems with fuzzy data can 

compute any positive real number.

By replacing the ordinary rewrite rules 

with fuzzy rewrite rules, a result is computed 

with some plausibility degree and this 

makes things even more interesting. The 

computational power of these machines is 

an open problem.

Given a  fuzzy set and element may 

belong to it with degree  while it does 

not belong to the set with degree that is 

equal to 1-.  Krassimir T. Atanassov [13] 

has proposed an interesting extension to 

fuzzy sets: sets where the non-membership 

degree is an “arbitrary” number  such 

that 0 <  +  < 1. These structures are 

known as intuitionistic fuzzy sets, but the 

term intuitionistic is a misnomer since 

these structures have nothing to do with 

intuitionistic mathematics. Clearly, one 

can defi ne the corresponding extension of 

multi-fuzzy sets and show their properties 

(see [14] for details). This author has 

defi ned P systems that are populated with 

“intuitionistic” multi-fuzzy sets [15]. It is 

possible to go further in the generalization 

ladder to defi ne really general multi-fuzzy 

sets and fuzzy P systems (see [17] for more 

details).

Apart from fuzzy models of 

computation, one can defi ne fuzzy models 

of concurrency that better explain what 

happens in reality. For example, processes in 

a system can be modeled by fuzzy multisets, 

where the membership degree denotes the 

degree to which a process is similar to a 

prototype process that consumes minimal 

resources. Next, one can defi ne fuzzy 

evolution rules that “specify” how a system 

evolves (see [18] a presentation of this 

idea).

Epilogue Despite its age, the fi eld of 

fuzzy computing is relatively immature 

since many ideas have been developed the 

last few years. This means that students 

and researchers who are looking for a new 

exciting research should consider doing a 

research project in fuzzy computing!   
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