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Fuzzy set theory is a mathematical theory about vagueness, which is a fundamental
propery of this world. Some believe that fuziness is a just one facet of vagueness,
but some other believe that it is the only expression of vagueness. Despite of this,
most models of computation ignore vagueness and “exist” in an exact and defectless

world. And this assumption has affected the way real computers are being built.
By introducing fuzziness to models of computation, one aims to develop models of
computation that are closer to reality. The text that follows is a brief survey of some
fuzzy models of computation.

Originally, the word computing was synonymous
with counting and reckoning, and a computer was an
expert at calculation. In the 1950s with the advent of
the (electronic) computer, the meaning of the word
computing was broadened to include the operation
and use of these machines, the processes carried out
withinthe computer hardwareitself, and the theoretical
concepts governing them. These theoretical concepts
find their roots in the Turing machine [1], that is,
a conceptual computing device that was devised
by Alan Turing, the great British logician, in the mid
1930s. In essence, Turing showed that computation is
a process of symbol manipulation, since his machine
is dully processing symbols that are printed on a tape.
More specifically, a Turing machine consists of paper
tape divided into cells and a scanning head that moves
across the tape and can read and write symbols on
each cell. At any given moment, a machine is in a
state. Depending on the state the machine is and the
contents of the cell that is currently being scanned by
the scanning head, the machine enters a new state
and either replaces the contents of the cell or moves
to the cell that is either to the left or to the right of
the cell being scanned. At each moment, the machine
consults the controlling device to determine what to
do next. By using a technique, which was developed
by Kurt Gédel, the famous Austrian mathematician,
Turing had shown that it is possible to “construct”
a universal machine, which would take as input the
specification of a machine together with its input, that
is capable of solving a great number of problems. The
importance of this universal machine is so great that
some thinkers claim that modern computers are in
fact realizations of it. However, this claim is clearly
an exaggeration as modern computers are able to
interact whereas Turing machines do not interact
with their environment.

Despite the fact that the Turing machine is not
the only model of computation, still it is the most
widely known model. There are other models that
equally interesting. For example, P systems [2], which
have been proposed by Gheorghe P un, is a model of
computation inspired by the way living cells function.
Basically,aP systemis structure that consists of nested,
porous membranes that contain indistinguishable
copies of objects. Attached to each compartment is
a set of rewrite rules, that is, equations that roughly
specify how the contents of a compartment should be
modified (strictly speaking, a rewrite rule is a method
to transform a character string into a new one; for
example, the Unix sed utility is a program that allows
users to implement simple rewrite rules). In particular,
such rules may specify that copies of certain objects
should be deleted or moved to another compartment
or that copies of objects should be introduced from
outside or be created out of thin air. Rules are applied
in parallel in such a way that only optimal output is
generated. When there is no more activity, the result
of the computation is equal to the number of (copies
of the) objects found in a designated compartment—
the output compartment. P systems operate in a
massively parallel way while they can interact with
their environment.

A basic assumption of both Turing machines and
P systems is that all operations are exact. In different
words, vagueness is taken seriously into account. It is
true that there are probabilistic versions of both Turing
machines and P systems, but this is not the kind of
vagueness that offers a new insight. On the other had,
although fuzziness is basic expression of vagueness,
still its use in models of computation is largely ignored
by most computers scientists. But what exactly is
fuzziness?
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Fuzzy set theory was developed by
Lotfi A. Zadeh [3] who had the ingenious
idea to define an extension of the notion of
a set where elements belong to a degree. In
particular, given a collection of objects, one
can assign a membership degree, which is
usually a number greater or equal to zero
or less than or equal to one, to each object
to form a fuzzy subset of this collection. As
a concrete example, consider a group of
people. Then we can form the fuzzy subset
of tall people of this group. Depending on
the height of the people and our knowledge
of the height of people, in general, one can
form this fuzzy subset. In the most general
case, one can argue that the membership
degrees are not algorithmic in nature. On
the contrary, one could say that they are
based on the subjective judgement of some
expert.

Fuzzy sets have been successfully
used in various applications and that is
why they are particularly “popular” among
engineers. However, not everyone shares
this enthusiasm. Indeed, there are many
thinkers who believe that statements like
Serena is tall to a degree of 0.70 are basically
elementary mistakes of logic. These thinkers
propose that statements like this can be
rephrased as Serena is 70% tall and in this
case the statement is either true or false
In the first statement we actually say that
Serena is tall and the truth degree of this
statement is 0.70, where 1 denotes absolute
truth. The interesting thing is that one can
use statements like this in (fuzzy) inference
rules to make deductions, something not
possible with the exact statement above. In
other words, the real difference between the
two approaches is in the denotation of the
two statements.

Zadeh believes that probability
theory and fuzzy set theory are rather
complementary in that one can use fuzzy
sets in cases where probability theory is
not useful and vice versa. Others believe
that fuzzy set theory is more fundamental
than probability theory and randomness.
Interestingly, the recent proof of the “Free
Will Theorem” by John Horton Conway
and Simon Kochen has revealed that [I]
f experimenters have a certain property, then
spin 1 particles have exactly the same property.
Since this property for experimenters is an
instance of what is usually called “free will” we
find it appropriate to use the same term also
for particles [4, p. 1444]. Interestingly, they
derived their result without using probability
theory or randomness, while they conclude
that randomness is not needed. But this
does not exclude vagueness as a property
of this world, thus, fuzziness can be used to
reason about vague things. These remarks
make it clear that models of computation

based on fuzzy set theory are closer to reality
than anything else. In the rest of this article,
I will briefly present fuzzy Turing machines
and fuzzy P systems, which are the most
promising models of fuzzy computation.

Fuzzy Turing Machines Eugene S.
Santos [5] is the first researcher who
formalized fuzzy Turing machines. However,
it was Zadeh that spoke first about fuzzy
algorithms [6]. In the most general case,
a fuzzy Turing machine is one where the
transition from one configuration (e,
the state the machine is together with the
information regarding the cell that is being
scanned and the information contained in
the cell) to another configuration (i.e., the
new state that the machine enters, what has
been written in the cell and which direction
the scanning head has moved) is associated
with truth degree. In the end, a fuzzy Turing
machine computes a result with some
plausibility degree. The important question
concerning fuzzy Turing machinesis whether
they can solve problems that their non-
fuzzy counterparts cannot. Indeed, there are
problems that cannot be solved using Turing
machines. For example, due to Turing's work
on the halting problem, we know that when
a program gets stalled, a computer program
cannot say whether it has entered an infinite
loop or not. Now, Jifi Wiedermann [7],
has shown that fuzzy Turing machines can
solve problems that cannot be solved by
an ordinary Turing machine. In particular,
it seems that fuzzy Turing machines can
decide whether problems like Goldbach's
conjecture is true or not. This conjecture
asks whether every even integer greater
than 2 is a Goldbach number, that is, a
number that can be expressed as the sum
of two primes. Naturally, one may ask why
we do not use them to solve such problems.
The answer is very simple: we need to
program the machine to solve the problem!
Thus, what Wiedermann claims is that
we can program the machine to solve the
problem but he does not offer a solution to
any particular problem. Stricktly speaking,
Wiedermann claims that fuzzy Turing
machines are actually hypermachines [8],
that is, machines that can solve problems no
Turing machine can solve.

Fuzzy P Systems Since vagueness is
basic property of our world, it makes sense
to expect biological systems to be vague.
Thus, a fuzzy version of P systems is model
of computation that is closer to reality.
Fuzzy P systems have been introduced
by this author [9]. In order to explain how
these systems operate, it is necessary to say
a few things about fuzzy multisets and fuzzy
rewrite rules.

A multiset [10] is as generalization
of the concept of a set. While ordinary

sets contain different elements, a multiset
contains copies of different elements. For
example, {11,2,2,2,3,4,4,4} is a multiset
that contains two copies of “1,” three copies
of “2," one copy of “3,” and three copies of
“4." Typically, it is assumed that the number
of copies is finite. Fuzzy multisets have been
introduced by Ronald R. Yager [12]. In fact
they are generalization of both ordinary
sets and multisets—different number of
copies of elements may belong to different
degrees. This means, that it is possible to
have three copies of element “x" where
each of them belongs to the set with degree
0.62 and seven copies of “x” that belong
to the set with degree 0.81! Although this
may seem weird, still it is quite possible to
find real world examples where this makes
sense. Nevertheless, for our purpose we
need a restricted form of fuzzy multisets,
that | have coined mutli-fuzzy sets, where it
is possible to have only one set of copies
for each element that, naturally, belong
to the set to a degree. Usually, the term
cardinality refers to the number of elements
of some set. In the case of a multi-fuzzy set,
the cardinality is the sum of all element
occurrences, where for each element the
occurrence is the product of the number of
copies of this element times its membership
degree. Now, a fuzzy rewrite rule is one that
it is possible (not probable!) to transform
a character string into another one with a
specific plausibility degree.

Suppose that we have a membrane
structure and each compartment is
populated with a multi-fuzzy set. In
addition, assume that each compartment is
associated with a finite number of multiset
rewriting rules. Assume that the degree
to which the n copies of a belong to a
designated compartment A is i; also the
degree to which the m copies of a belong
to a designated compartment B is j. If there
is a rule that moves as from A to B, then,
after using this rule, the degree to which
the compartment B will contain a multi-
fuzzy set with n + m copies of as will be
equal to max{i, j} (i.e., we sum up the two
multi-fuzzy sets). In the end, the result of
the computation is equal to the cardinality
of the output compartment. P systems with
fuzzy data produce, in general, real positive
numbers and so, unexpectedly, extend their
computational power.

The following picture depicts a simple
example of P system with fuzzy data:

i) = (i, 1 /b
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This P system contains n objects in
compartment 1, which will be transferred
into compartment 2. The cardinality of the
multi-fuzzy set contained in compartment
2 is equal to n/m. Thus, the result of this
particular computation is a positive rational
number. However, there is nothing that
prevents one from computing any real
number, if we assume that objects may
have real numbers as membership degrees.
Indeed, the following theorem makes this
explicit:

Theorem. P systems with fuzzy data can
compute any positive real number.

By replacing the ordinary rewrite rules
with fuzzy rewrite rules, a result is computed
with some plausibility degree and this
makes things even more interesting. The
computational power of these machines is
an open problem.

Given a fuzzy set and element may
belong to it with degree p while it does
not belong to the set with degree that is
equal to 1-p. Krassimir T. Atanassov [13]
has proposed an interesting extension to
fuzzy sets: sets where the non-membership
degree is an "“arbitrary” number v such
that O < p + v < 1. These structures are
known as intuitionistic fuzzy sets, but the
term intuitionistic is a misnomer since
these structures have nothing to do with
intuitionistic mathematics. Clearly, one
can define the corresponding extension of
multi-fuzzy sets and show their properties
(see [14] for details). This author has
defined P systems that are populated with
“intuitionistic” multi-fuzzy sets [15]. It is
possible to go further in the generalization
ladder to define really general multi-fuzzy
sets and fuzzy P systems (see [17] for more
details).

Apart  from  fuzzy ~models of
computation, one can define fuzzy models
of concurrency that better explain what
happens in reality. For example, processes in
a system can be modeled by fuzzy multisets,
where the membership degree denotes the
degree to which a process is similar to a
prototype process that consumes minimal
resources. Next, one can define fuzzy
evolution rules that “specify” how a system
evolves (see [18] a presentation of this
idea).

Epilogue Despite its age, the field of
fuzzy computing is relatively immature
since many ideas have been developed the
last few years. This means that students
and researchers who are looking for a new
exciting research should consider doing a
research project in fuzzy computing!
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