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Abstract

The relationships between “two-sided” categorical models of linear logic and Goguen sets is investigated.
In particular, we show that only certain Goguen sets can be represented as Chu spaces, while it is possible to
represent any Goguen set as a Dialectica space. In addition, we discuss the bene8ts of these representations.
c© 2004 Elsevier B.V. All rights reserved.

1. Introduction

Category theory [10] is a very high-level abstract mathematical theory that uni8es all branches of
mathematics. Category theorists de8ne collections of objects and morphisms or arrows (i.e., maps)
between objects that are called categories. In addition, they investigate the internal structure of a
category and/or the relationships between categories. Goguen, using the language of category theory,
de8ned Goguen sets and their categories in [7]. Goguen sets are the categorical equivalent of all
possible forms of fuzzy sets. Topoi are special categories that have been proposed as a possible
foundation of all mathematics and computer science, so it would be interesting if Goguen categories
were topoi. However, Goguen categories lack certain properties that would classify them as topoi.
To remedy this de8ciency, Barr in [4] has given a general framework in which one can rede8ne
Goguen sets so that their category forms a topos.

In 1958, Kurt GAodel published in the journal Dialectica an interpretation of intuitionistic arithmetic
in a quanti8er-free theory of functionals of 8nite type, which has come to be known as Dialectica
Interpretation [2]. de Paiva [4] presents her own categorical version of the Dialectica interpretation.
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In her thesis, she presents two categories with morphisms that correspond to the Dialectica inter-
pretation of implication. The work was expanded in [12], where she presented one more categorical
version of the Dialectica interpretation. The term Dialectica space has been used in [12] as a gen-
eral name of an object of any Dialectica category. The Dialectica categories are models of linear
logic [5]. This is particularly interesting, as categorical semantics model derivations (i.e., proofs)
and are not just used to deduce whether a theorem is true or not. Another widely known categorical
model of linear logic is based on the Chu construct described in [3]. Chu categories are built by
means of the Chu construct, that is the enrichment of the category Chu(V; k) over the category V .
Chu spaces are objects of a category Chu(Set; C), where Set is the category of sets and functions
between them and C is a set. Note that any category Chu(Set; C) is usually denoted by Chu(C). Chu
spaces and Dialectica spaces are called “two-sided” models of linear logic because they consist of a
co-variant and a contra-variant component. This way, linear negation can be obtained by exchanging
the rôles of the two.

Linear logic and fuzzy sets are particularly important to computer scientists, so the discovery of
any link between the two theories would be of great interest. The motivation behind the present
work is to show that such a link exists. One way to do this is by representing Goguen sets as either
Chu spaces or Dialectica spaces. We show that it is possible to represent only some Goguen sets as
Chu spaces, but, surprisingly, it is possible to represent any Goguen set as a Dialectica space.

In what follows we will make use of Zadeh’s image and preimage operators. In particular, given
a lattice L and a function f :X → Y , the image f→ :LX →LY and the preimage f← :LX →LY are
de8ned by

f→(a)(y) =
∨
{a(x) : x ∈ X; f(x) = y}

and

f←(b) = b ◦ f;
respectively. In addition, it is a fact that these two operators form an adjunction f→ �f←, so for
all a∈LX and all b∈LY it holds that a6f←(f→(a)) and f→(f←(b))6b.

2. Goguen sets

In order to introduce the concept of a Goguen set, Goguen himself used the notion of a frame or
locale, that is a complete lattice where binary meets distribute over joins:

x ∧
∨

Y =
∨
{x ∧ y :y ∈ Y}:

This amounts to saying that a lattice A is a frame if and only it is a complete Heyting algebra. This
can be proved by de8ning the operator → in a frame as follows:

a→ b =
∨
{c : c ∧ a6 b}:

For the remainder of this note, L is a frame. We now give the de8nition of Goguen sets.
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De�nition 2.1. Let L be a frame. A Goguen set is a pair (S; �), where S is a set and �∈LS .
Given two Goguen sets (S; �) and (T; �) a map f : (S; �)→ (T; �) is a function f : S→T such that
�6f←(�).

Goguen sets are also known as L-fuzzy sets. Following Goguen, we de8ne the category SET(L)
with Goguen sets as objects and maps between Goguen sets as morphisms.

Goguen sets are general enough. So we will not consider any other form of the concept of fuzzy
set, such as “intuitionistic” fuzzy sets [1]. 1 The main reason is that the L-intuitionistic fuzzy subsets
of a set have been shown in [8] to be order-isomorphic to the L∗-fuzzy subsets of that same set,
where

L∗ = {(a; b) ∈ L× L : a6 b′}
and L∗-fuzzy subsets are understood in this case in the usual sense of the L-fuzzy subsets as in [6].

Barr in [4] notes that the categories SET(L) are not topoi. Thus he proposes an extension to
the concept of Goguen sets so that the resulting categories are topoi. The main drawback to this
extension is that fuzzy sets are not fuzzy enough. In particular, two members of a fuzzy set are either
equal or are not equal, which is just the “crisp” de8nition. Following Barr, we de8ne a Goguen set
to be a triplet (S; �; �), where � : S × S→L is a measure of the degree to which two members of
the Goguen set S are equal. After this modi8cation, the resulting categories are topoi. Here is one
possible de8nition of equality between members:

�(s1; s2) =




0 if (s1 
= s2) ∧ [�(s1) = �(s2)];

min{�(s1); �(s2)} if (s1 = s2) ∧ [�(s1) 
= �(s2)];

1 otherwise;

where ∧ is the standard Boolean conjunction operator.

3. From Goguen sets to Chu and Dialectica spaces

A Chu space over an alphabet � (i.e., an arbitrary set whose structure is of no importance) is a
triplet (X; r; A), where X and A are arbitrary sets and r :X ×A→� is a function. Function r relates
the elements of X with the elements of A. For example, suppose that �= {0; 1} and that A stands
for the set of open subsets of X . Then, r(x; a) = 1 if x belongs to the open subset a, else r(x; a) = 0.
Following a similar way of thinking, one can represent any relational structure (e.g., groups, vector
spaces, categories, etc.) as a Chu space.

Let A= (X; r; A) and B= (Y; s; B) be two Chu spaces. Then a transformation from A to B is
just a pair of functions (f; Nf), f :X →Y , Nf :B→A, such that

s(f(x); b) = r(x; Nf(b)); ∀x ∈ X;∀b ∈ B; (1)

1 The term “intuitionistic” is a misnomer. It has been used because both in “intuitionistic” fuzzy set theory and in
intuitionistic logic there is no complementarity between a proposition and its negation. In our opinion, “intuitionistic”
fuzzy sets should be better called non-symmetric fuzzy sets.
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or in displayed form

X × B
f×idB−−−−−→ Y × B

idX× Nf

�

� s

X × A −−−−−→
r

�

(2)

This condition is called the adjointness condition. We build a category Chu(�) with objects all
Chu spaces and with morphisms pairs of functions that ful8ll the adjointness condition. Morphism
composition is the usual composition of functions pairwise. For any Chu space (X; r; A) it is easy to
verify that the identity morphism is the pair of functions (idX ; idA).

Let L be a frame. Then we consider a subcategory of SET(L) with the following property:
for each pair of objects (S; �) and (T; �), a function f : S→T is a morphism between them iP
�=f←(�). We call this subcategory SET(L)=. Although the restriction imposed on the morphisms
of SET(L)= may seem too strong, the following proposition shows that there are enough morphisms
in SET(L)=.

Proposition 3.1. Let (S; �) and (T; �) be Goguen sets and f : S→T an injective function satisfying
f→(�) = �. Then f : (S; �)→ (T; �) is a morphism such that �=f←(�).

This proposition is immediate from the following remarks:

Remark 3.1. If f :L→M , g :L← M are isotone maps between posets, then f � g implies f ◦ g ◦f
=f. If it is also assumed that f is injective, then g ◦f= idL.

Remark 3.2. If f :X →Y is injective, then f→ is injective, which implies that f← ◦f→= idLX .

Now we proceed with the de8nition of the functor F from the subcategory SET(L)=, for some
8xed L, to the category Chu(L). We 8rst de8ne the object part:

De�nition 3.1 (Object part). Let (S; �) be an object of SET(L)=. Then functor F maps it to the
Chu space (S; r; {�}), where r(s; �) = �(s).

The following result is direct consequence of the previous de8nition:

Corollary 3.1. Functor F is injective on objects.

We now de8ne the morphism part of the functor:

De�nition 3.2 (Arrow part). Suppose that F(S; �) = (S; r; {�}) and F(T; �) = (T; s; {�}). Moreover,
suppose that f : (S; �)→ (T; �) is an arrow of SET(L)=. Then F(f) = (f; g), where g(�) = �.
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The following result is a direct consequence of the above de8nitions:

Theorem 3.1. Any subcategory SET(L)= fully embeds 2 into a category Chu(L).

Goguen sets can be represented more naturally as Dialectica spaces. Generally speaking, Dialectica
spaces are Chu spaces with more morphisms between them. Although there at least three diPerent
families of Dialectica categories, here we are interested only in the categories DialLSet, where L is a
lineale that is, a monoidal poset with additional structure. Here are the relevant de8nitions borrowed
from [13].

De�nition 3.3. A monoidal poset is a poset (L;6) with a given symmetric monoidal structure
(L; ◦; 1). That is, a set L equipped with a binary relation 6, together with a monoid structure (◦; 1)
consisting of a (order-preserving) multiplication ◦ :L×L→L and a distinguished object 1 of L. We
write a monoidal poset as a quadruple (L;6; ◦; 1).

Operator ‘◦’ is a logical conjunction operator, which is not necessarily idempotent. In addition, 1 is
not necessarily the top element of L. Suppose now that L is a monoidal poset and a, b are elements
of L. If there is an x∈L, which is the largest element of L such that a ◦ x6b, then this element is
denoted a( b.

De�nition 3.4. A lineale (or close poset) is a monoidal poset such that a ( b exists for all a and
b in L. We write a lineale as a quintuple (L;6; ◦; 1;().

In addition, it holds that z ◦ x6y iP z6(x(y). Practically, this is a proof of the following:

Corollary 3.2. Given a frame L, the quintuple (L;6;∧; 1;⇒), where ⇒ is the exponential, is a
lineale.

We are now ready to de8ne the family of categories DialLSet [12]:

De�nition 3.5. Let (L;6; ◦; 1;() be a lineale. Then the objects of a category DialLSet are triplets
(X; r; A), where X and A are arbitrary sets and r :X ×A→L is function. Suppose that (X; r; A) and
(Y; s; B) are two objects. Then a morphism between them is the pair (f; g), where f :X →Y and
g :B→A, such that

r(x; g(b)) 6 s(f(x); b); ∀x ∈ X;∀b ∈ B:

Note that any category DialLSet is a symmetric monoidal closed category with involution and
products and it is a categorical model of intuitionistic linear logic.

2 The expression fully embeds is an alternative to the more common term the embedding is full.
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By following a line of arguments similar to those employed for Theorem 3.1, we can prove the
following theorem:

Theorem 3.2. Any category SET(L) embeds fully into a Dialectica category DialLSet.

4. Discussion

In [9], the authors present an ePort to “reconcile two diPerent attempts to come to grips with the
foundation of mathematics.” One is mathematical logic and the other is category theory. The resulting
theory is called categorical logic. Strictly speaking, categorical logic is an alternative presentation of
logic.

In categorical logic categories are viewed as deductive systems. In particular, a categorical combin-
ator � :A→B (i.e., a morphism from A to B) is the representation of a proof A�B. In addition, the
very existence of this combinator can be thought of as the “reason” why A entails B.

As we have already pointed out any category DialLSet is a symmetric monoidal closed category
with involution and products and it is a presentation of intuitionistic linear logic. In addition, any
category Chu(K) is a presentation of classical linear logic. It is also a fact that there are many
objects of both categories which are the images of Goguen sets. Since both families of categories
are presentations of linear logic, one may prove theorems in linear logic using, among others,
fuzzy terms. Furthermore, the connectives of linear logic are naturally presented by endo-functors.
Obviously, if we are working in a subcategory with objects the images of Goguen sets, we can de8ne
fuzzy connectives as endo-functors. Practically, this means that we can employ fuzzy formulas and
prove theorems about them. In addition, we can combine fuzzy formulas with linear logic formulas
and prove “mixed” theorems. Let us now demonstrate this idea with an example.

We consider the formula A&B(A. This formula can be proved using the intuitionistic linear
sequent calculus as follows:

A � A
A&B � A

� (A&B) ( A

The proof above can be presented with a number of categorical combinators. This is almost trivial,
once we have de8ned the various connectives of linear logic as endo-functors. For example, the
connective & (pronounced with), which yields the sum of two terms, is de8ned as follows:

De�nition 4.1. The sum of any two Dialectica spaces (X; r; A) and (Y; s; B) is the triplet (X + Y; t;
A× B), where t((x; y); (0; a)) = r(x; a) and t((x; y); (1; b)) = s(y; b).

Here X +Y = {0}×X ∪{1}×Y is the direct sum of the sets X and Y . Suppose now that (S; s; {�})
and (T; t; {�}) are two Dialectica spaces representing the Goguen sets (S; �) and (T; �), respectively.
Obviously, these two Dialectica spaces can be used in the above proof. This, in turn, means that we
have a proof of a formula in linear logic using fuzzy subsets as terms.
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Now, it is relatively easy to de8ne a subcategory with objects the images of the objects of some
Goguen category. In this subcategory, we can de8ne the various connectives of fuzzy set theory as
endo-functors. For example, here is the object part of such an endo-functor:

(S; q; {�}) ∨ (S; r; {�}) = (S; t;  );

where t(s;  ) = max{q(s; �); r(s; �)}. By continuing our construction, we populate our subcategory
with objects that are generated by applying the linear connectives to the objects of the initial sub-
category. At the same time, one probably has to adjust the de8nition of the fuzzy connectives so
that they produce meaningful results in all possible cases. In the end we get a structure where we
can reason in the framework of fuzzy set theory and linear logic! This is indeed a very important
perspective and needs to be explored in depth.

In the short history of linear logic, there have been some other interpretation of formulas and
proofs. For example, formulas are viewed as computational processes and proof structures as dis-
tributed systems. This means that one can explore the use of fuzzy set theory in concurrency theory
through the link described above. In addition, games can be viewed as formulas and strategies as
proofs, which means that one can explore fuzzy game theory in a new setting. But these are areas
of active research and so we do not plan to get into the details here.

5. Conclusions

We have shown that we can partially embed Goguen sets into a Chu category, while we can
fully embed any category SET(L) into some Dialectica category DialLSet. Since, these Dialectica
categories are models of intuitionistic linear logic, we have actually found a link between fuzzy set
theory and linear logic. In addition, we have presented some ideas that may be used to introduce
fuzzy set theory in mainstream computer science.
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