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Abstract. The mathematical representation of multisets as objects of Chu
categories is a very promising development in the theory of multisets; it provides
the framework to model computational and non-computational “phenomena” in
a very natural way. In this paper we show how we can represent multisets as
Chu Spaces and also we give some interesting examples.

1. Introduction

In many scientific disciplines we encounter groups of objects (e.g., people, ele-
mentary particles, etc.), that share a common property. In most cases we are only
interested in the number of objects that have this particular property. For example,
consider a group of people. Then if we are interested in their smoking habits we can
say that n out of m people are smokers and, naturally, m — n are non-smokers. Since
such cases occur very often, we need a (formal) mathematical structure to model this
kind of data. Such a structure exists and in general it is called a multiset (see [13]
for an overview of the theory of multisets). Multisets form a generalization of sets:
“identical” elements can occur a finite number of times. If we consider a multiset of
people and a multiset of elementary particles, we observe that there are two forms of
multisets: one where repeated elements are distinguishable and one where repeated
elements are indistinguishable. We call the former multisets and the latter pure mul-
tisets.

Multisets have found many applications in computer science; for example, they are
used in database theory [7], they are used to provide a semantical description of some
form of the m-calculus [5], they are used in membrane computing [10] (an exciting
new theory of computation), etc. In addition, a collection of papers on applications
of multisets in theoretical computer science can be found in [4].
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Category theory has been heavily used in computer science mainly because it offers
an abstract way to view things. Chu categories are a particularly interesting case,
because they have found so many application in computer science. For example, they
have been used as models of concurrency [12], as models of fuzzy sets [9], as models of
information flow [2], as a model of linear logic [6], etc. Consequently, it is interesting
to see whether it is possible to model multisets as objects of some Chu category.

Structure of the paper. In this paper we begin with a formal definition of
both multisets and pure multisets. We continue with the definition of categories of
all possible multisets and pure multisets, respectively. Next, we define functors by
which we map multisets and pure multisets to objects of (different) Chu categories.
Moreover, we briefly describe the properties of these functors. We conclude with
a description of possible applications of multisets (pure or not) as objects of Chu
categories.

2. Mathematical Representations of Multisets

In this section we formally define multisets and pure multisets. We start with
multisets (the definitions are from [8]):

Definition 2.1. A multiset X is a pair (X, p), where X is a set and p an equiva-
lence relation on X. The set X is called the field of the multiset. Elements of X in
the same equivalence class will be said to be of the same sort; elements in different
equivalence classes will be said to be of different sorts.

Remark 1. The pair (X, ), where () denotes the empty relation and X is a set,
is actually an ordinary set.

Given two multisets X = (X,p) and Y = (Y, 0), a morphism of multisets is a
function f : X — Y that respects sorts; that is, if z,2’ € X and z p z/, then
f(z) o f(2'). Most obviously, multisets and multiset morphisms form a category
which we call Mul. Let us now proceed with pure multisets.

Definition 2.2. Let D be a set. A pure multiset over D is just a pair (D, f),
where D is a set and f : D — N is a function.

Remark 2. Any ordinary set A is actually the pure multiset (A4, x4), where x4
is the characteristic function of A.

Let C be a category. A functor E : C°? — Set is called a presheaf on C. Thus,
a presheaf on C is a contravariant functor. The presheaves on C with natural trans-
formations as arrows form a category denoted Psh(C). Suppose that C is a set (i.e.,
a discrete category); then the presheaf F' : C' — Set denotes a pure multiset, since
F(c) is a set whose cardinality is equal to the number of times ¢ occurs in the pure
multiset. So, for any set C, the category Psh(C) denotes the category of all pure
multisets of C.

Suppose that F': A — Set is a presheaf and that A is a set. Then if we form
the set X = J,c 4 Xs, where X; = F (i), we can define the function p : X — A. This
function is equivalent to the presheaf F. Moreover, p~!(a) (i.e., the preimage of p)



Categorical Models of Multisets 395

is the set of copies of a in the pure multiset. Now, we can define a category of all
possible pure multisets:

Definition 2.3. Category Bags is a category of all possible pure multisets.
i) The objects of the category are pairs (A, p), where p : (J;c 4 Xi — A.

ii) An arrow between two objects (4, p) and (B, q) is a pair (f,g), where f : A — B
and g : X — Y, such that the following diagram commutes:

X oeiee - Y
A » B

iii) Suppose that (A,p) (F9) (B,q) and (B,q) (F8) (C,r) are two arrows; then

(f,g9)o(f',g")=(f"of,g og) such that in the following diagram

3

the outer rectangle commutes if and only if the inner squares commute.
. (idx,ida) . . .
iv) The arrow (A4,p) =" (4, p) is the identity arrow.

We have provided categorical representations of both forms of multisets. We will
now focus on how we can represent multisets as objects in some Chu category.

3. Multisets as Objects of Chu Categories

The Chu construct is a way to create a x-autonomous category from an au-
tonomous category. The term autonomous category is an alternative term for a sym-
metrical monoidal closed category, while a *-autonomous category is an autonomous
category with a given duality functor. The Chu construction is described in [1] and it
is named after P.-H. Chu, a student of Michael Barr. Let us now give the definition
of the Chu construct:

Definition 3.1. Given an arbitrary object L in a category A, we construct the
category Chu(A, 1) as follows:

i) The objects of Chu(A, 1) consist of triplets (4,7, As), where Ay, Ay are ob-
jectsin A and r: A; ® Ay — L is an arrow in A.
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ii) An arrow from (Ay,r, As) to (By, s, By) is a pair (f, f), where f : Ay — Bj and
f: By — A, are arrows in A such that the square

f®id
A, ® By, —22 B, ® B,

ida, ®f

A1 ® Ay

1

commutes.
iii) Arrow composition is defined pairwise.

iv) For any object (A1, 7, A3), the identity morphism is the pair (id4,,ida,), where
id4, and idy4, are the identity morphisms of A; and Az in A.

We have found that pure multisets can be represented as objects in Chu(Rel, 1),
where Rel is the category of sets and binary relations between them and 1 a singleton
set. Moreover, pure multisets can be represented as objects in Chu(Set, 2?), where
Set is the category of sets and functions between them. Note that one can omit the
category if no confusion arises (e.g., one can write Chu(K) instead of Chu(A, K)).

The objects in Chu(Rel, 1) are triplets (X, R, A), where X and A are arbitrary
sets and R is a binary relation in X x A, i.e., RC X x A. If x € X is related to some
a € A, we denote this by R a. Otherwise, we simply write 2 R a.

Suppose that A = (X, R, A) and B = (Y, 5, B) are two objects in Chu(Rel, 1);
then a transformation between them is just a pair of relations (f, g), where f C X xY
and g C B x A, such that

id
xoB 2% yenp

idx®gl ls (2)
X®A

1
We mention now the following important result:

Proposition 3.1. The following diagram

X .

A
o o
B

S

Yy —

1s identical to diagram 2.

Proof. Since functor ® in Rel is just the Cartesian product of sets (i.e., the cate-
gorical product in Set), so a ® b — 1 is just a — b. O
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The above proposition can be stated more generally as follows:

Proposition 3.2. If A is any *-autonomous category, then Chu(A, 1) is A2,
where L is a dualizing object.

From Proposition 3.1 we conclude that diagram 3 is equivalent to the following
equation:
(So f)(z)= (9o R)(x),Vx € X. (4)

Since we want to represent multisets as objects in Chu(Rel, 1), we need to define
a functor M. We start by defining the object part of the functor:

Definition 3.2. (Object part) Functor M maps each object (4, p) in Bags into
the Chu space (A4, p, X), where X = dom p, and p is the graph of the function p, and
a p X; if and only if the multiplicity of a is equal to the cardinality of X;.

We now proceed with the arrow part of the functor:

Definition 3.3. (Arrow part) Let (A,p) and (B,q) be two objects in Bags.

Moreover, suppose that (A, p) 9 (B, q) is an arrow between these objects. Then

M(f,9) = (f,§~"), where f is the graph of the function f and §~' the inverse of the
graph of the function g.

The properties of the functor are summarized in the following assertion:
Theorem 3.1. Functor M is injective on objects and faithful.

Proof. Let (f,g) and (f’, ¢') be two parallel morphisms in Bags such that (f, g) #
(f',4g"); then M(f,g) # M(f',¢’), since the graphs of two different functions are
different. This proves that M is faithful. That M is injective on objects is obvious
from its definition. |

It is easy to verify that Mul is actually a sub-category of the category Stry (i.e.,
the category of all binary relational structures). In general, the category of category
of all n-ary relational structures (denoted Str,,) is defined as follows:

Definition 3.4. For any ordinal n, an n-ary relational structure (X, p) consists
of a set X, the carrier, and an n-ary relation p € X" on X. A homomorphism
f:(X,p) — (Y,0) between two such structures is a function f : X — Y between
their underlying sets for which fp C o. Here fp denotes {fa | a € p}, where a
denotes (aog,...,an,—1) and fa denotes (fag,..., fan—1). We denote by Str, the
category formed by the n-ary relational structures and their homomorphisms.

In [11] it is shown that Str,, fully embeds into Chu(2"); hence the objects in Mul
can be represented as objects in Chu(2?) using the same recipe. Here is the recipe:
We start with a multiset (A, p), from this we construct the Chu space (A4, u, R), where
R consists of those pairs r € (24)? of subsets of A for which [[,7; € p. Note that
p=1—p. Now, let u: A x R — 22 satisfy u(a,r); = 1 if a € r;, and 0 otherwise.
This completes our construction.
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4. Discussion

Consider a group of people A. Moreover, suppose that we have asked this group
of people to answer a particular question (e.g., “What is your favorite ice-cream fla-
vor”?). Then the results of the survey can be represented by the multiset (A4, p). If for
any two individuals x and y it holds that x p y, then we are sure that both individuals
have given the same response to the above question. In addition, if we have several
such surveys, we can compose them using the following recipe: Construct the mul-
tiset that corresponds to each survey; create the corresponding Chu Space; by using
the predefined operators (endo-functors) of the Chu category generate “composite”
surveys. Let us now present two of these operators.

Assume that A = (A,r, X) and B = (B, s,Y) are two Chu spaces. Then, A® B =
(A+B,t,X xY)and A&B=(Ax B,t/,)X+Y). In the first case we have that

t(a, (x,y)) =r(a,z) and (b, (z,y)) = s(b,x)
and in the second that
t'((a,b),z) =r(a,z) and t'((a,b),y) = s(b,z).

Let us see how we can interpret composite surveys generated with these two op-
erators. Let A and B be two Chu spaces representing two surveys. Then A & B
describes the combined survey where we can immediately tell what each individual
answered to each survey. On the other hand, A & B is a combined survey form which
we can tell which individuals answered a particular question.

All the processes that are active at any given moment in a computer system form
a multiset. In addition, all processes that are spawned from a particular computer
program belong to the same sort. Since we can represent any multiset as a Chu
space, and Chu spaces have been proposed as models of concurrency, we can combine
these facts to develop a more realistic model of concurrency that is based on Chu
spaces and multisets. Similarly, we can “implement” existing models of concurrency
by observing the same things. In what follows, we show how we can “implement” a
particular model of concurrency using exactly these ideas.

The chemical abstract machine (or cHAM for short) [3], is a model of concurrency
where processes are treated as molecules (in a chemical solution) that may interact.
The basic laws that govern the behavior of the CHAM follow:

e The Reaction Law. An instance of the right-hand side of a rule can replace the
corresponding instance of its left-hand side. Given a rule

/ / /
my,mo,..., M, —— M1, Mo, ...,MYy

if My, M, ..., My, M{,Mj, ..., M/ are instances of the m,’s and the m;’s by a
common substitution, then

My, My, ..., My} — {M;, M}, ..., M/}

where {M;, Ma, ..., M| denotes a solution.



Categorical Models of Multisets 399

e The Chemical Law. Reactions can be performed freely within any solution

S — 5
SUS = 5w

where S W S’ is a new solution obtained from solutions S and S’ by mixing-up
them. Technically speaking, S & S’ is a multiset with the property that if s
occurs a times in S and b times in S’, then it occurs a + b times in Sw S’.

o The Membrane Law. A membrane ({ - [}) is a mechanism by which we can
transform a solution into a single molecule. This way we can allow sub-solutions
evolve freely in any context

S — 9
{CsIk — {Cls)
where C[S] denotes a contet, i.e., a solution with a hole [ ], in which we can
place another solution S. This operation is similar to the S-reduction of the
A-calculus.

e The Airlock Law. An airlock makes a membrane porus so that the solution
contained in it can communicate with the outside world. The molecule con-
structor < builds a new molecule out of a molecule and a solution, so m < .S
is a molecule composed of the molecule m and the solution S. The following
equation expresses this machinery:

{m}pw S «—— {m< S}

Note that the double arrow means that we can go from left to right and vice
versa.

Suppose that (A4,p, X) and (B, ,Y) are two objects of Chu(Rel, 1) representing
to multisets. Then any arrow (f,g) between these two objects can be viewed as a
reaction transforming the solution (A4, p, X) to (B, §,Y). Mixing up two solutions in
the sense of the Chemical Law is equivalent to the direct product (&) of two solutions.
This simply means that we observe the same properties—nothing more, nothing less.
Sub-solutions are actually subspaces of a particular space. It is not difficult to see

how on can represent an ordinary set as a Chu space; therefore it is easy to derive
the Airlock Law.

5. Conclusions

The derivation of an alternative mathematical representation of a well-known
(mathematical) structure is not an easy task mainly because one has to justify the
usefulness of this new representation. In this paper we described categorical models
of multisets. In addition, we have shown how one can represent multisets as Chu
spaces. Furthermore, we presented examples which demonstrated the usefulness of
this new representation of multisets. We believe that our work can be proved useful
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to people trying to connect entities that seem to be unrelated, at least at first sight.
For example, fuzzy multisets can be naturally represented if we generalize the Chu
spaces that represent either multisets or fuzzy sets. Last, but not least, our ideas
may have application to Membrane Computing as membranes may contain multisets
of objects that interact.
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