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Abstract

P systems is a model of computation inspired by the way cells live and function. A typical P system
consists of nested compartments surrounded by porous membranes, which contain data that are transformed
by transformation rules. P systems can be simulated by a distributed computing system, where each com-
partment of a given system is simulated by a (remote) process, each running on a different node. By adopting
a more “liberal” membrane structure where compartments do not necessarily form a tree-structure but a
graph-structure, we get a more general model of computation, which we call graph structured P systems.
Any instance of the new model can be implemented by a network of virtual machines, called II machines,
where each machine is able to implement the functionality of any simple compartment.
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1 Introduction

P systems [3, 4] is a model of computation that is based on an abstraction of the living cell. In its most
simple form, a P system consists of nested compartments each surrounded by a porous membrane. This struc-
ture of nested compartments is called a membrane structure. Figure 1 depicts a rather complex membrane
structure. Each compartment is populated by a multiset, which draws from a set of objects. Also, each com-
partment is associated with a number of multiset rewriting rules. Computation starts by simultaneously and
non-deterministically applying rules to the contents of each compartment while actions take place synchronously.
When it is impossible to apply any rule, then the result of the computation is equal to the cardinality (i.e., the
total number of elements) of the multiset contained in a designated compartment called the output compartment.
Since one can introduce various other features into a P system and, thus, define other forms of P system, the
simple systems just described are known in the literature as transition P systems.

Figure 1: A floor plan of a rather complex membrane structure.
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Because rules are applied in parallel, one may think that each compartment is an independent machine,
which is just part of a network. However, since rules are applied synchronously, the network looks more like a
distributed system. This observation has led this author and his colleagues to explore the connection between
P systems and distributed computing in [8]. This connection was later elaborated in [6]. The authors of [8] have
demonstrated that one can very naturally simulate the functionality of transition P systems in a distributed
environment. In particular, based on Java’s Remote Method Invocation these authors designed and implemented
a Java class realizing the basic functionality of a typical compartment of a P system. Objects of this class can be
used to simulate any transition P system. More specifically, one object plays the role of the “top” compartment.
In the beginning, this object reads a description of a P system (its membrane structure, the rewriting rules
associated with each compartment, and the multisets that populate each compartment), checks whether there
are enough objects running on possibly different machines so as to start the simulation and if there are, the
simulation begins.

The simulator described in [8] formed the basis for an effort to design a virtual machine to implement the
functionality of a simple compartment. Quite naturally this effort led to the idea of defining graph-structured
P systems and, then, to define virtual machines capable of implementing each node of such a network. The
resulting virtual machines are called II machines. Clearly, graph-structured P systems are a generalization of
ordinary P systems and as such they may be of interest to people working in the area of natural computing.
However, it is quite possible that someone may object the usefulness of these systems by claiming that these
systems have nothing to do with cells. In response, let us first observe that a graph-structured system can be
used to describe networks of trees, which may “describe” cells. More generally, my reply to comments like this
is that one should use Nature as a source or inspiration, not as a framework that delimits one’s imagination.

Relation to Similar Projects There are at least two programming “systems” that are similar to our graph-
structured P systems and the virtual machines capable of implementing them. However, there are fundamental
differences between them and our proposal. In particular, the Cell Programming Language, which was designed
and implemented by Pankaj Agarwal [1], is a tool that allows its user to write programs that mimic the life of
a biological cell. In other words, CPL is a tool for the creation of computer simulations of living cells. Our
virtual machines are not a simulation tool (at least of this kind), but machines designed to realize any graph
structured P system. On the other hand, the chemical abstract machine, which was designed by Gérard Berry
and Gérard Boudol [2], is built around the notion of a chemical solution consisting of molecules and being
(magically) stirred continuously. Molecules may interact with other molecules to create new molecules. Also,
molecules may dissolve to create new, simpler, molecules, etc. Indeed, this model of computation seems more
akin to our proposal, nevertheless, the cham is an abstract machine while IT machines are virtual machines. But
one can compare the expressive power of chams with those of graph-structured P systems, although the later
have nothing to do with the so-called chemical metaphor.

Plan of the paper First, I formally define graph structured P systems. Next, there is a rather informal
description of the structure of II machines, their instruction set, and how they do operate. Right after, there is
a precise description of the instruction set that is followed by a few remarks concerning this work.

2 Transitional Graph Structured P Systems

As was noted above, the membrane structure of a typical P system forms a hierarchical tree structure, which, in
my opinion, is not general enough. Since each tree is a graph, but not vice versa, it it clear that graph-structured
P system should be more expressive and, possibly, more powerful than tree-structured P systems. This simple
idea motivated the definition of graph structured P systems:

Definition 2.1 A graph-structured P system is a collection of compartments, each surrounded by porous mem-
brane, multisets, drawn from the same set of objects, and multiset rewriting rules that is specified as follows:

II = (Oagmna (w)ijv (R)ijv (j)lj)7
where

1. O is a set of objects or, simply, an alphabet that denotes types of information.
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2. gmn isarelationin {1,...,m}x{1,...,n}, that describes a network of nodes that define the graph structure
of the system. Here n,m € N, N = {0,1,2,...}, are fixed numbers for each system definition. Also, in
what follows, the letters p and ¢ with two subscripts will, in general, denote some compartment.

3. (w)ij, 1 <i<mand1 < j<n, are strings representing multisets of objects, which are elements of O, and
denote conglomerations of information. Each string is associated with compartment p;;.

4. (R);; are finite sets of evolution rules over O; R;; is associated with compartment p;;. An evolution rule is
of the form u — v, where u is a string over O and v is a string over OnTar, Where OnTar = O X NTAR,
and NTAR = {here,out} U {to;;|(1 <i<m) A (1 <j<n)}

5. (3)i; is a collection of designated compartments that are called the output compartments.

The rules that belong to some set of evolution rules R;; are applied to the objects of the compartment p;;
simultaneously, synchronously, and non-deterministically. Given a rule u — v the effect of applying this rule to
a compartment p;; is to remove the submultiset of objects specified by u and to insert the objects o; specified
by v in the regions designated by the target commands /¢; associated with each object. In particular,

1. If (a, here) € v, the object a will be placed into compartment p;; (i.e., the compartment where the action
takes place). In other words, this command introduces a new object into the current compartment.

2. When (a,out) € v, the object a will be placed into the compartment that is “nearer” to the current
compartment or to any compartment that lies in its proximity, in case more than one compartment have
this property (the choice is always nondeterministic). Observe that we can imagine that all compartments
are laid on the nodes of a square grid. Thus, it is easy to compute the relative distance between any two
compartments.

3. If (a,to;;) € v, the object a will be transported into compartment p;;.

At any given moment, the sum of the cardinalities of the multisets contained in the compartments iy; is equal
to the natural number that has been computed so far.

Clearly, it is quite possible to add some input nodes, which will get input from the environment and, possibly,
be used as a way to dump information to the environment. Although I do not plan to elaborate on this idea,
nevertheless, I will discuss it again in passing in the next section.

3 The Virtual II Machine

In this section I will present the IT machine and its operation. Also, I will present the structure of programs that
these machines accept. Here the term program will refer to the assembly program analog of ordinary machines.
Although it is not difficult to define a binary file format for our programs, there is no real reason to invent yet
another binary file format since programs are very simple.

Each IT machine consists of a memory, a processor and communication channels. The memory of a machine
is divided into two distinguished areas: the text area and the data area. The text area is used to store commands,
while the data area is used to store objects in some compact form. A processor executes the commands stored
in the text area and manipulates the data stored in the data area. Also, a processor can execute commands
for other external processors, implementing in this way a form of remote code execution. The communication
channels are used to send and receive information from/to other machines. Each IT machine is associated with a
unique address so as to be able to distinguish machines being parts of a network. This number is similar to the
MAC address (Media Access Control address) of a NIC (network interface card). Information travel in the form
of packets containing a single object plus the sender’s and the receiver’s unique address. Packets that cannot
be delivered are simply disregarded. A processor neither can write data to a full memory, nor it can delete data
from an empty memory.

The text area is actually a command pool from which nondeterministically the machine picks a command to
execute. The machine stops only when it cannot execute a command. In other words, a machine’s operation is
equivalent to the following loop:

while (1) {
randomly select a command;
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Figure 2: A diagram depicting the general structure of a II machine. The arrows between the processor and
the memory depict the internal communication channels, while the other pair of arrows depict the outgoing and
incoming communication channels.

if (command is not meaningless) {
execute command;
wait for sufficient time;

}
else {
abort program execution;
b
¥

A command is called meaningless when it is impossible to execute it. For example, when a command tries to
add data to a full memory it becomes meaningless and, thus, causes the machine to abort the execution of
the program. Another situation where a command becomes meaningless is when there are no data to alter or
transport. Since I do not want to impose any implementation technique or algorithm, I will not specify how
the machine randomly selects a command. For example, if the commands are stored in some indexed linear
structure and a pseudo-random number generator is used to randomly pick a command, then this would be a
reasonable implementation of this requirement. When the execution of a particular command has finished, the
machine has to wait for sufficient time so as to fulfill requests from other machines (e.g., to delete a bunch of
objects from its memory).

The programs a II machine accepts reflect its structure. In particular, programs consist of two distinguished
sections: the data section and the text section. The data section is used to specify the initial data, that is,
the multiset which will be stored in the data area of the memory of a particular machine, and the text section
contains the code that the machine will store in the text area of its memory. Later on, the machine will execute
this code. Since a machine does operate in a nondeterministic way, it does not make any sense to pay any
attention to the order by which the commands are specified. Below, I give the general structure of a generic
IT machine program:

data:
ni, 01
n2, 02
nS? Os
text :
com;q
comsy
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com,.

end :

Here n; € N and o; is an element of an alphabet. The notation n;, 0; means that the machine’s memory contains
n; copies of 0;. Also, com; denotes any command from the following list:

dispatch d,7 Remove all d’s from the machine that executes this command and send them to the designated
machine 1.

replace d, d’,i Replace all occurrences of d in the memory of the designated machine ¢ with d’. If i = —1, then
this operation takes place for the machine that is actually executing this command.

delete n,d,i Delete n occurrences of d from the memory of the designated machine i. If n is not a natural number
but the symbol *, then it deletes all occurrences of the symbol d. In addition, if # = —1, this operation
takes place locally.

create n,d,i Create n copies of object d and store them in the memory of machine i. As in all previous case, if
i = —1, then the operation affects the memory of the machine that actually executes this command.

isempty 7,7 This command checks whether the data area of the memory of the designated machine ¢ is empty
or not. In case it is empty, then the designated machine j halts and clears the text area of its memory and
locks itself up prohibiting any further alteration to the contents of the data area of its memory. Notice that
this command was introduced mainly to solve problems that have been encountered in the representation
of recursive functions as P systems (see [7]).

It is possible to add an input command that will get an unspecified number of copies of some unspecified object
to the memory of the machine that executes this command. Note that we do not demand that the object belong
to the alphabet of the system. Thus, they might be some new symbols that either do not affect the computation
or they do affect it in an unexpected way.

Let us now give a precise description of what exactly each command is doing. In different words, I will state
the semantics of II machines by explaining what each command is doing. At any given moment, each machine is
characterized by the command it executes, the totality of the commands stored in the text area of its memory,
the contents of its memory data area, and the size of the free data area memory. In different words, assuming
that time is discrete:

Definition 3.1 At any given moment a Il machine is characterized by a quintuple
(07 i? (E)i7 Ma S)a

where ¢ is the command being executed, (E); is a collection of indexed commands, which represents the collection
of commands stored in the text area of its memory, 7 is the index of the next command to be executed, m is a
multiset representing the contents of the data area of its memory, and s is the total size of the data area of its
memory (allocated plus free memory).

Obviously, at any moment the free data area memory is equal to s — card M. In the beginning, a machine is
characterized by the following quintuple:
(E, i, (E)i, M, s),

where € denotes the empty command. When a command becomes meaningless, the machine is characterized by
the following quintuple:

(s5,—1,0,M"",s),
where —1 in place of the index of the next command denotes that the there is no next command to be executed
(i.e., the machine is about to halt or has already halted). Also, the collection of commands to be executed has
become empty. More compactly, the operation of a machine can be described by a transition relation like the
following one:

(EaiO,(E)iaMas) -
(Sioail,(E)iaMlvs) -
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As note above, each machine can modify the data area of the memory of any other machine with which it coexists
in some network. Since, it has been explicitly stated that the machine operate nondeterministically, this implies
the memory should be modified accordingly. However, as stated above, it is a natural requirement to demand
that first, at each tick of the clock, the memory is modified by the processor of the machine to which belongs
the memory and, then, by all other machines in a truly nondeterministic way.

In order to proceed it is necessary to recall a few definition from the formal theory of multisets. As usual,
readers familiar with the various notions and the corresponding symbols employed to define them can safely skip
the next paragraph.

A multiset A is characterized by a function A : X — N, where X is some universe set. In general, A(a) =n
means that the multiset A contains n copies of a. To simply the discussion that follows, a multiset will be
described, and not just characterized, by some function.

Definition 3.2 Let A, B : X — N be two multisets. Their sum A W B is a new multiset such that
(AW B)(z) = A(z) + B(z),Vx € X.

Definition 3.3 Suppose that A : X — N is a multiset and B C X is a set whose characteristic function is
x5 : X — {0, 1}, then the set-removal of B from A is a new multiset A ® B such that

(A® B)(z) = A(x) - (1 — xp(z)),Vx € X.

Definition 3.4 Let A, B : X — N be two multisets, then the removal of B from A is a new multiset A © B such
that
(A © B)(z) = max{A(z) — B(x),0},Vx € X.

We are now going to give a formal description of the effects of the commands presented above. For simplicity,
in all cases I will assume that no command is meaningless.

The dispatch command First let us see how the machine’s own memory is altered:
((dispatch d,n),ig, (E)i, M, s) —

((dispatch d,n), iy, (E);, M ® {d}, s) —

Next, we need to see how is modified the memory of machine n:

(¢ st (B)js My, sy)  —
(C;z_ﬂj“(E)jaMr/msn) —

/N
<
3
s
5
S
3
.
=
O)
=
®
——
=
—
=
“CIJ
N—
!

!

The replace command Since it is not known which memory this command affects, let us see how it operates,
in general:

(C;‘l 7jl+17 (E)la (M’I/L/ © (MZ ® {d})) & {dlv cee 7d/}a 5) -
[ —

x copies
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where x = card(M/! © (M} ® {d})).

The delete command This command behaves like the replace command, so, again, let us see how it operates,
in general:

(C/ajla(E)jaMi7sn) -
] —

(exsinsn, (B)i, MY © {d, .. d},s) =
——

n copies

When n is replaced by *, the data area of its memory contains the multiset M/ & {d}.

The create command For simplicity let us describe the command when i = —1:
((create d,n,—l),ik,(E)i,M,s) —

((create d,n,—1),i, (E);, MW {d,...,d}, s) —
—_—————

n copies

The isempty command First let us see what happens to the machine that executes this command:

((isempty n,m),ig, (E);, M, 5) —
(Cikvik-i-h(E)iaMa S) -

Clearly, when the memory of node n is empty, then node m should stop, in other words:

(C//ajl7(E)j7M7 S) -

4 Conclusions

Graph-structured transition P systems are a generalization of transition P system, where the tree-structured
membrane structure is replaced by the more general graph-structured membrane structure. In addition, data
can be transported from any node (a compartment surrounded by a membrane) to any other node. Thus,
achieving maximum flexibility. Also, there are more than one output nodes, while there is provision for input
nodes that will facilitate the communication with the external world. With a few words, the II machine is a
virtual machine that can be used to implement, and not just simulate, any graph-structured transition P system.
By finding a suitable way to encode integer functions as graph-structured P system (see [5, 7] for two proposals on
how to encode recursive functions as P systems), it will be possible to use them to compute concrete functions. In
addition, they might be used as a simple tool for the design and implementation of complex distributed systems.
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